Collaborative Exploratory Research: The Anticipatory

Route Guidance Problem

SPR ID# C-05-04

FINAL REPORT
July, 2006

Submitted by

Soulaymane Kachani, Assistant Professor, Department of Industrial Engineering
and Operations Research, Columbia University, 334 S.W. Mudd Building, 500 W.
120th Street, New York NY, 10027, Tel: 212-854-1804; Fax: 212-854-8103;
Email: kachani@ieor.columbia.edu

Georgia Perakis, Associate Professor, MIT Operations Research Center,
E53-359, 77 Massachusetts Avenue, Cambridge MA, 02139 Tel: 617-253-8277;
Fax: 617-258-7579; Email: georgiap@mit.edu

S

\ 4

The 2005 UTRC Research Initiative
Region Il

In cooperation with

New York State Department of Transportation
and
U.S. Department of Transportation

Disclaimer Statement

“The contents of this report reflect the views of the author(s) who is (are) responsible for the
facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the UTRC, NYSDOT, or the Federal Highway
Administration. This report does not constitute a standard, specification or regulation.”

The contents of this report reflect the views of the authors, who are responsible for the facts
and the accuracy of the information presented herein. This document is disseminated
under the sponsorship of the Department of Transportation, University Transportation
Centers Program, in the interest of information exchange. The U.S. Government assumes
no liability for the contents or use thereof.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

Collaborative Exploratory Research: The Anticipatory Route

Guidance Problem

5. Report Date

6. Performing Organization Code

7. Author(s)

Soulaymane Kachani, Assistant Professor, Columbia University, Georgia
Perakis, Associate Professor, MIT Operations Research

8. Performing Organization Report No.

49777-1805

9. Performing Organization Name and Address

Columbia University, 334 S.W. Mudd Building, 500 W. 120th

Street, New York NY, 10027
Region 2- University Transportation Research Center, New York,

NY 10031

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

New York State Department of Transportation

50 Wolf Road
Albany, NY 12232

13. Type of Report and Period Covered

Final Report
July 1, 2005 - June 30, 2006

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Finding solutions to fixed point problems can help government and industry leaders to plan for real
world success. One concrete example of problem solving which may be amenable to fixed point
solution is the anticipatory route guidance problem (ARG). An exercise in dynamic traffic user-
equilibrium, this problem envisions a communications system which transmits dynamic, shortest path
traffic data to drivers. But anything that influences the path-choice decisions of drivers will, in

itself, affect traffic conditions on the ground.

The challenge is clear: develop a model in which shortest-path forecasting does not become a self-

defeating prophecy.

This research develops and evaluates a software system which explores the ARG problem from a
fixed point perspective. A significant part of our research consists in identifying the best algorithms
for step size computation. Methods evaluated include: MSA (Method of successive averaging),
Polyak iterate averaging method, and a variety of potential optimization line search methods.

17. Key Words

Route guidance, Dynamic traffic user-
equilibrium, Advanced traveler information
system (ATIS), Traveler information

18. Distribution Statement

19. Security Classif (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No of Paaes 22. Price

104

Form DOT F 1700.7 (8-69)

Table of Contents

TABLE OF CONTENTS ..ottt ettt ettt e e e e e skt e et e e e e e s e bbb e e et e e e e e e s b b n b e et e e e e e e asbbeneeeeeeesaannnrees v
INTRODUGCTIONttt ttteteie ettt ettt ettt ettt st s et s e ettt sttt sttt s s s s st 5 et s st e bt s e e bnbnnen 1
CONSISTENT ANTICIPATORY ROUTE GUIDANCE ... 1
COMPUTATIONAL IMPLEMENTATION AND TESTS ..o 2
NETWORK LOADING MAP (S) ..uttiiiiiieiiiiiiiiitit e e e e e se ettt e e e e e s e st tae e e e e e e e s saaaaebeeeeeeeessaaanabeeeeaaeessaasntaaseeeeeessanssnrnneees 2
(TN [0 Lot = VY = () PP 2
@ TN R YN =) TR PR 2
ALGORITHMS .. iitete ettt et et e e e ettt e e et e e e e st e oo e R et e e e s e e e e e R Ee e e e e s et e e e asE et e e e s r et e e e anneeeennre e e e enreeeeanres 2
F =T = To [T S PPR 3
Constant Step Size Averaging AlQOTtNMuuuiiiii e e e e e e e e s s bt e e e e e e s st arreaaeessaaees 3

MSA (Method of Successive Averaging) AIGOMTNIMoooiiiiiiii e 4
Polyak Iterate Averaging AlGOTTNM i i e e e e e et e e st e e e e e e e e annebneeas 5
Potential Optimization Line Search AlGOrithm e 6

L0001)Y/ =T doT=T o o =TT 7
Exit Capacity and StOrage CaPaCityccu e e e iiiieiieiiieee ettt e e e e ettt e e e e e e s e aab e ee e e e e e e s e snbbeeeeeeaeannreeees 8
L2001 o 1 oo IR ERPT 10
BASIC COMPONENTS OF THE APPLICATIONuttetieitreeeesasrreeessssneeessssneeesssnneeesasnae e e s enneeessnnneessnsneeessnnnneeesennnes 12
1] 01U = OSSP 12
T ol o] i (o] I o =TT PPRT PP 12

N =] 1= TP PURTP PP 13

L 11 I L= PSR 14
L0113 = USSP 15

[oTo 101 V1V 3o F- S PSR PPPUPRRRT 15
Other Hard-Coded CONSLANTS.........coiiiiiiiiiiie ettt e e e e e st e e e e e e s et eeeaeeessasntaeeeeeeeessansrneeeeeeesesnnns 15

= 1] o] o F- TP PO PP PP PPPPPPTP 15
AVG_VEH_LEN ...ttt ettt ettt h e h e h e e bt e e h bt e e h bt e eh bt e e Rkt e ea bt e e abe e s a bt e eh e e eb b e e nbeeenbe e e bneeneeeeee 15

(o 0 L=T £ T T PO P TP U PP P PP TR 15

(0 1177 1= PSP PP PPPPPPPRPPPPPIRt 16

621 0 OO PP PP P PP PP PP PP PPPPPPPPPPPPPPPPR 16

(1 1C=To [T G (] oL PP PTPT T OPPPPPPPPTN 16

MAX _FILE_NAME_LENGTH. ...ttt ettt ettt sttt s bt sh e s bt e sab e e et e e et e e sbeenabeesnbeesnneean 16

1Y 0TS 1 O EERTR 16

S = L A 1 L= PP PO PP OPPPPPPPRR 16
SWILCHING_PENAILY ...ttt e e et e e e bt e e a et e e ettt e e e et e e e e s 16

L] =] 013 EEPR TSP 16

LT o T][0 OO SEPR TP 16

f 018 11 01U | 16
DAta SIUCIUIEoeeiiiiiiii i r e e e e e s s r e e e e e s s s a e e e r e e e s s s b arae s 18

LT LS 4T €= L] SRRt 18
PAIN_TIME_TADIE ...ttt oottt e e e oo ot bttt e e e e oo e ha bbbt et e e bbbt et e e e e e e nnbbe e e e e e e e e aanne 18

= Lo PR UURTUPRTRTN 18

111 g TS = T =] PP UOPUPRRRN 19

L U =T (] P TP OO PP PP TPPPPPPTP 20
PAN_SPIE_TBDIE ...ttt e e et e n e s 21

O T - T = PR SOPUPRPRTN 21
node-destinatioN-Path (NAD) ... c..eei i e e e e e e e e e s s e e e e e e e s s tbrae et aeeesabaetaaeeeasntbaeeeaeeeaanne 22

101 (O V1 (=] 1 DU PP OPPPPPPPPTN 24

L0 U1 o 11 | SO PTPPRRRTUPPPPPIN 25
[0 R {1 [T PP PTP T OPPPPPPTPTN 25

(oo NV =T o =T ol][O P PTR PO PPPPPPPPN 25

1 o1 I g L= @ U1 oIV L (o 1) PSR 25

File LINK VOIUMES OULPUL (FLVO) ...ttt ettt ettt e e e e ettt e e e e e e e mtbae e e e e e s nntbeeeaeeeeannnneeeeas 26

File Path TiMe OULPUL (FPTO) ...eiiiiiiiieiiiie ittt ettt ettt e e skt e e st e e s e e e ek e s ante e e s nsneeeeannreeenans 26

File Path Volumes OULPUL (FPYVO)coiiiiiiiiiiee ittt ettt s et e st e e aab e et e e s e e e e annneeenaes 27

File Path SWItches OULPUL (FSWO) ...ciiiiiiiiiiiiiiie ettt e e et e e e e e e st e e e e e s st b aa e e e e e e asatbeeeeeeseannraeeeas 27

File Split Path OUIPUL (FSPO) ittt e e e e e e e e e e e ettt e e e e e e sasbbaaeeseasstbeeeaaeeeansneaeeeas 28

File Vehicle EVents OUIPUL (FVEO) ...coooi ittt ettt e e ettt e e e e e s e bbbt e e e e eatbb b e e e e e e e e annneneeeas 29

WORKING WITH THE APPLICATION .etuutttutettnettteetuteesessteessessseestsessaestsessesstaresniersesstaressmeeseeesaresaeerierneeenn 31
Prepare Development ENVIFONMENToiiiiiiiiiee ettt ee e e e e s st e e e e e e s s s saaabe e e e e e e e s sesanreeeeeeaeessnrnneens 31
TS F= 1IN Eo Y= W d F= 1101 0 ST 31

LTS 2= 1 IO AL N TR 31

[aIS] = 1L ol 1T o PSR 31

Install C/C++ DeVelopmMENt TOOIS (CDT)... . ueiiiieiiiiiiiiiiee ettt e et e e e e e e e et e e e e e e e e e e asbeeeeaaeeaaantaeeeaaeeaannneeeeeas 31
Retrieve All Files from UNIX ENVIFONIMENTuuiiiiii et e et e et e et e s e s e s s e s et e sesaasessanseseres 31
CFEALE @ PIrOJECL. ... ettt e ettt e e e e oo oo aa bttt et e ee e e s e aaabbe st e e ee e e s e annbeeeee e e e sannbeaeeeaaaeaeaann 31
LO70] 101 0] 1= TP PROUPUPPRPTR 35

L) T 37
DESCRIPTION OF THE TEST NETWORK .. .cuutttttttttettteettiettteeeteesneesteeeseseteesnersnesstresnerseestaressnesseeesnmeeaeesieres 40

(C1 Y e ol O 10 =T U 1 R 42
Test Case 2_0_10000_ITERATIONS, SDG MapPPING......cccceeiiiiirimrereeeeeiiiiirieereeeeessssisnnnssesseessesssssssseeees 52

Test Case 2_0_10000_ITERATIONS, DGS MaPPING...cieceeeiicirrieeieeeesiiiuieneeeeeeesssnnssseneeseessssnsssseeeseessnn 57

Test Case 2_ 0 RELAXED _EXIT_CAPACITY, SDG MaPPING «.eeeeeeeeiiiiiiiiireeeeeeissiinineeeeeesssnnssnneeeseesans 63

Test Case 2_ 0 RELAXED_ EXIT_CAPACITY, DGS MaPPING ...cveeeeeeeeeiiiierinereeeeesissenieereeseessesnsssnnneeeees 68

Test Case 2_0_RELAXED _STORAGE_CAPACITY, SDG Mapping.......ccccueereeeeerinminineeeeeeeesensnereneeeeens 74

Test Case 2_0_RELAXED STORAGE_CAPACITY, DGS Mapping......ccccuueeeeeeeesiiiiieieeereeeeesinnenieeeeeeeens 79

Test Case 2.1 MSA THEN _POLYAKttt e e e st e e e e e e s s st aeee e e e e e e e s annraneeeeeas 85
TestCase 2 2 POTENTIALS ... 86

[] U] IR 1 T 99
HARDWARE SPECIFICATION ..vuuieetueetetteeesetaeessaaseesstaaeesesaeseesaaesesaneeeeasaeeeeaseesetansereranaserennesesnaseretaeeerssnsee 99
(OF0] Y =1 1] = N =R 99
METHOD OF SUCCESSIVE AVERAGING (IMSA). ... eiiiiiieiie e e e ettt e e s s st e e e e e e s e st e e e e e e e s s snntnaneeeaeeeeannnnnnneees 99
POLYAK ITERATE AVERAGING ALGORITHM ..itutiitutitttettetttesetatetaaessaeetnssstaesstesansstaresaetsnesttteraststeeestereresseres 99
POTENTIAL OPTIMIZATION LINE SEARCH ALGORITHM ..uuiiuniittiitniiiieetteianesstesssessnesstnssstsstasersessseesnsersneesneees 99
(@@]\ (@ I 1] []\ 100
L d o N (O T 100

Introduction

Finding solutions to fixed point problems can help government and industry leaders to plan for real world
success. One concrete example of problem solving which may be amenable to fixed point solution is the
anticipatory route guidance problem (ARG). An exercise in dynamic traffic user-equilibrium, this problem
envisions a communications system which transmits dynamic, shortest path traffic data to drivers. But
anything that influences the path-choice decisions of drivers will, in itself, affect traffic conditions on the
ground.

The challenge is clear: develop a model in which shortest-path forecasting does not become a self-defeating
prophecy.

This research develops and evaluates a software system which explores the ARG problem from a fixed point
perspective. A significant part of our research consists in identifying the best algorithms for step size
computation. Methods evaluated include: MSA (Method of successive averaging), Polyak iterate averaging
method, and a variety of potential optimization line search methods.

Consistent Anticipatory Route Guidance

A basic framework for analyzing anticipatory route guidance is defined by three time-dependent variables and
three maps that interrelate them. The variables of interest are path splits, network conditions and guidance
messages. The maps of interest are the network loading map, the guidance map and the routing map. These
maps can be combined in a variety of ways to obtain composite relationships needed to define and compute
consistent anticipatory guidance.

. . Network
Path Splits Network Loading Map Conditions
P S
C
Routing Map Guidance Map
D G

Guidance
Messages
M

The above lead naturally to the definition of composite maps that combine the dynamic network loading,
routing and guidance maps in different sequences. This research dealt with 2 out of 3 possible composite
maps:

- acomposite map DoGoS: P P fromthe domain path splits into itself, which starts with a set of
time-dependent path splits, forecasts the corresponding network conditions, determines an
appropriate set of guidance messages, which are disseminated to drivers and cause them to react in
some way, leading to a new set of path splits.

- acomposite map S°Do-G :C i C from the domain of network conditions into itself. This map
begins with a set of time-varying network conditions and determines the messages with which the
guidance system responds; these are communicated to drivers and affect the path splits, thus
resulting in a new set of network conditions.

Evaluating one of these composite framework maps corresponds to executing a one-pass forecasting model
that invokes the component maps in the indicated order of composition. Input to the model is an assumption
about the time trajectory of one of the framework variables (splits, conditions or messages); its output is a
prediction of a possibly different trajectory of the same variable. This can be written as:

model(assumption) = predictions

The guidance generated by a model is said to be consistent when the assumptions used as the basis for
generating it prove to be verified, within the logic of the predictive model, after drivers receive the guidance

1

and react to it. In terms of the composite framework maps, consistency means that a map’s predicted time-
dependent outputs coincide with its assumed time-dependent inputs. Again, this can be written as:

model(assumption) = predictions = assumptions

For the composite path split map, guidance is consistent if the forecast path splits coincide with the splits that
were assumed at the start. For the composite network condition map, guidance is consistent if the initial
network conditions used for the guidance determination coincide with those that result after the guidance is
disseminated. The coincidence of the assumed input value with the corresponding predicted output value of a
composite framework map can be expressed by saying that the value is a fixed point of the map.

Computational Implementation and Tests

An application was developed as part of this research to operationalize and
explore properties of the route guidance fixed point framework and to
investigate the performance of various algorithmic approaches. The system is
coded in C++. The following diagram shows the implemented algorithm in the
code at a glance, particularly for a composite map ScD-G:CH— C.

Network Loading Map (S)

The application is a traffic simulator. The network loading map is a discrete-
time vehicle based traffic simulator that implements a store-and-forward
protocol with blocking (spillback). The loader’s inputs are the network
description in terms of nodes, links and paths. The loader’s output is a table of
average link traversal times by link and by time of link entry.
It represents links as deterministic FIFO (first-in-first-out) single-server
queues with given exit (service) and storage capacities. Link attributes
include connectivity (and node numbers), length, fixed speed, number of
lanes and per lane exit capacity (Bottom, 2000).

Guidance Map (G)

The application can represent descriptive and prescriptive guidance.
Descriptive guidance is implemented as tables of time-dependent path
times from decision points to destinations, with separate tables maintained
for ubiquitous and short-range guidance. For the prescriptive guidance, the
guidance map simply designates a path having minimum travel time from
the guidance link to each possible destination, using the latest estimates of
time-dependent link traversal times for the path time comparisons (Bottom,
2000).

Routing Map (D)

The simulator’s routing map is based on an underlying model of driver route
choice behavior that predicts path choice probabilities. These become path
splits in one of two ways, at the user’s option. In an aggregate application of
the probabilities, they are assumed to apply to homogeneous group of vehicles
as a whole. In this case, the path splits are identical to the choice probabilities.
In a disaggregate application, each individual vehicle is allocated a path based
on an independent draw form the choice probabilities.

Algorithms

START SDG
A

SETUF
SIMULATION

A

FOR EVERY
REPLICATION
A
FOR EVERY
ITERATION

A

G MAP

<

S MAP

>

AVERAGING

»
»

A
END SDG

This section explains in more detail about parts of the algorithm that were studied particularly more closely

during the research.

Averaging

Constant Step Size Averaging Algorithm

The algorithm computes the conditions Ci+1 in iteration 1 + 1 in terms of those in iteration i as

Algorithm i1 i i i) o
C*'=C' +alseD-clc')-C')i=0..
- Take the value Stepsize computation parameter in Run Control File (for example, SDG-
test.run) and assign it to variable alpha.
- Store C' to I'tt0, in case of SDG mapping.
- Simulate the mapping and store S o D o G(C) to I'ttl, in case of SDG mapping.
- Call average_link_time_tables, in case of SDG mapping (or average_path_split_tables, in case
of DGS mapping, or average_msgs, in case of GSD mapping) in order to get C'+1
void average_link_time_tables (float alpha, link_time_table * Ittl, link_time_table * 1tt2)
if (! (Ittl->granularity == Itt2->granularity && lttl->nslices == Itt2->nslices)) {
cerr << "Attempt to average incommensurate link time tables !" << endl;
exit (1);
int nl = nw->get_nlinks O, = Ittl->nslices;
for (int il = il < nl; |I++) //mw2221 for each links.
for (int ip ip < ns; ip++) //mw2221 for each perlod -
Ittl ->Ittab[il][ip] //mw2221 calculate the average and populate link time table Ittl
= (PERIOD) ((1.0- alphgg * abs(lIttl- >Ittab[|l} |p])
3 + alpha * abs(Itt2->1ttab[il]1[ip]
Code - void average_path_split_tables

3 (float alpha, path_split_table * pstl, path_split_table * pst2)
Implementation
const float calpha = 1. - alpha;

int nz = nw->get_nzones (), nn = nw->get_nnodes ();

for (int io = 0; i0 < nz; io++)
if (pstl- >pretr|ptab[|o]) {
for (int ic = 0; ic < 2; ic++)
for (int id = 0; id < nz; id++)
for (int ip = 0, np = ph->get_npaths (io, id); ip < np; ip++)
for (int it = O; it < ninflowperiods; |t++)
pstl- >pretr|ptab[|o][|c][|d][| pl[it
calpha * pstl->pretriptab [|o][|c][|d][ip][it]
+ alpha * pst2->pretriptab [io][ic][id][ip][it];

}

for (int in = 0; in < nn; in++)
if (pstl->enroutetab[in]) {
for (int id = 0; id < nz; id++)
for (int fp = 0, np = ph->get_npaths (in, id); fp < np; fp++)
for (int tp = 0; tp < np; tp++)
for (int it = O; it < nperiods; it++)
pstl- >enr0utetab[|n][|d][fp][t JLit] =
calpha * pstl->enroutetab[in][id][fp][tpl[it]
+ alpha * pst2->enroutetab[in][id][fp]l[tpl[it];
3

In order to activate this type of averaging, set Stepsize computation optioninRun Control File (for
Dataset Modeling example, SDG-test. run) to 0. Also, specify the Stepsize computation parameter in Run Control
File.

MSA (Method of Successive Averaging) Algorithm

The following is the description of the algorithm (Bottom, 2000, page 130):

The MSA fixed point solution algorithm computes the conditions C i iteration 1+1 in terms of those
in iteration i as

Algorithm ¢ =c'+ 1 (sepoglc')-c)i=0..
i+1
The correction S oD o G(C')— C' that the MSA applies to iteration i 's estimate C' of the fixed point

solution is weighted by 1/(i + 1), with the overall correction becoming negligible as some point.

- Calculate -
i+1

- Store C' to Itt0, in case of SDG mapping.

and assign it to variable alpha.

- Simulate the mapping and store S o D o G(C) to I'ttl, in case of SDG mapping.
- Call average_link_time_tables, in case of SDG mapping (or average_path_split_tables, in case

. . . . i+1
of DGS mapping, or average_msgs, in case of GSD mapping) in orderto get C' ™.
- void average_link_time_tables (float alpha, link_time_table * Ittl, link_time_table * 1tt2)

if (! (Ittl->granularity == Itt2->granularity && lttl->nslices == Itt2->nslices)) {
cerr << "Attempt to average incommensurate link time tables !" << endl;
exit (1);

int nl = nw- >get nlinks (), ns = Ittl->nslices;
for (|nt il =0; il <nl; il++) //mw2221 for each links.
for (int ip = 0; ip < ns; ip+t+) //mw2221 for each perlod -
Itt1—>lttab[|l][|p] //mw2221" calculate the average and populate link time table Ittl
= (PERIOD) ((1.0-alpha) * abs(Ittl->Ittab[il][1p])
3 + alpha * abs(ltt2->1ttab[il]J[ip]) + 0.5);

Code - void average_path_split_tables
In1p|en1enta1i0n (float alpha, path_split_table * pstl, path_split_table * pst2)

const float calpha = 1. - alpha;
int nz = nw->get_nzones (), nn = nw->get_nnodes Q;

for (int io = 0; io < nz; io++)
if (pstl- >pretr|ptab[|o]) {
for (int ic = 0; ic < 2; ic++)
for (int id = 0; id < nz; id++)
for (int ip = 0, np = ph—>get_npaths QG
for (int it = 0; it < ninflowperiods;
pstl->pretriptab[io][ic][id][ip][it] =
calpha * pstl->pretriptab [io][ic][id][ip
+ alpha * pst2->pretriptab [io][ic][id][ip

id); ip < np; ip++)

==
I—II—I
==
=
a/

it];
}

for (int in = 0; in < nn; in++)
if (pstl- >enroutetab[|n]) {
for (int id = 0; id < nz; id++)
for (int fp = 0, np = ph >get_npaths (in, id); fp < np; fp++)
for (int tp = 0; tp < np; tp++)

for (int it = 0; it < nperiods; it++)

pstl- >enroutetab[|n][|d][fp][t J[it] =
calpha * pstl->enroutetab[in][id][fp][tpl[it]
+ alpha * pst2->enroutetab[in][id][fpl[tpl[it];

3
3

In order to activate this type of averaging, set Stepsize computation optioninRun Control File (for

Dataset Modeling example, SDG-test.run)to 1.

Polyak Iterate Averaging Algorithm

The algorithm is described as follows (Bottom, 2000, page 136):
When applied to find a fixed point of the S o D o G map, the Polyak algorithm can be written:
c*'=C'+4'(s-Doclc')-C') i =0...
éSi+1 (: L 1 (:|+1
i+1

Algorithm ~n . o . .) . .
where C" in the final iteration N is the fixed point estimate.

In practice, iterate averaging (computation of the c' s) is only started after the MSA-like step shows
signs of stabilizing. (This is called the window of averaging.)

Step sizes &' are frequently generated by formula such as L7 with y e (1/2 ,1). A common choice
is ¥ =2/3 . Inall runs presented here, # =1 and y =2/3.

- Take the value Stepsize computation parameter in Run Control File (for example, SDG-
2
%

- Store C' to Itt0, in case of SDG mapping.

test.run), multiply it by i and assign the result to variable alpha.

- Simulate the mapping and store S o D o G(C) to I'ttl, in case of SDG mapping.
- Call average_link_time_tables, in case of SDG mapping (or average_path_split_tables, in case

. . . . i+1
of DGS mapping, or average_msgs, in case of GSD mapping) in orderto get C' ™.
- void average_link_time_tables (float alpha, link_time_table * Ittl, link_time_table * 1tt2)
{

if (I (Ittl->granularity == Itt2->granularity && lttl->nslices == Itt2->nslices)) {
cerr << "Attempt to average incommensurate link time tables !" << endl;
exit (1);

int nl = nw->get_nlinks (), ns = Ittl->nslices;
for (int il = 0; il < nl; il++) //mw2221 for each links...
for (int ip = 0; ip < ns; ip++) //mw2221 for each period...
Itel->1ttab[il][ip] //mw2221 calculate the average and populate link time table Ittl
= (PERIOD) ((1.0-alpha) * abs(lttl->Ittab[il][ipD)
+ alpha * abs(ltt2->Ittab[il][ip]) + 0.5);
¥
- void average_path_split_tables
(float alpha, path_split_table * pstl, path_split_table * pst2)

const float calpha = 1. - alpha;
int nz = nw->get_nzones (), nn = nw->get_nnodes Q);

for (int io = 0; io < nz; io++)
if (pstl- >pretr|ptab[|o]) {
for (int ic = 0; ic < 2; ic++)
for (int id = 0; id < nz; id++)
Code fo; (|2t ip=0, np = ph—>g$} npathsd(io idg; ip < np; ip++)
i or (int it = 0; it < ninflowperiods; it++

Implementatlon pstl- >pretr|ptab[|o][|c][ld][l pl[it] =

calpha * pstl->pretriptab [|0][|c][|d][ip][it]

+ alpha * pst2->pretriptab [io][ic][id][ip][it];

}

for (int in = 0; in < nn; in++)
if (pstl- >enroutetab[|n]) {
for (int id = 0; id < nz; id++)
for (int fp = 0, np = ph—>get_npaths (Cin, id); fp < np; fp++)
for (int tp = 0; tp < np; tp++)
for (int it = 0; it < nperiods; it++)
pstl- >enroutetab[|n][|d][fp][t J[it] =
calpha * pstl->enroutetab[in][id][fp][tpl[it]
} + alpha * pst2->enroutetab[in][id][fpl[tpl[it];
}

- After the first set of iterations is done, take C I] is the iteration at which the MSA-like step shows signs of

stabilizing. It is "arbitrarily" defined by start iter. Store Clto Ittl, in case of SDG mapping. Initiate 1€t0, in
case of SDG mapping. The next set of iterations starts at start_iter.

1

- Calculate —1 and assign it to variable alpha.
i—j+

- Call average_link_time_tables, in case of SDG mapping (or average_path_split_tables, in

case of DGS mapping, or average_msgs, in case of GSD mapping) in order to get C 1 This will
update 1ttO.

- Simulate the mapping and store S o D o G(Ci) to 1ttl, in case of SDG mapping.

In order to activate this type of averaging, set Stepsize computation optioninRun Control File (for
Dataset Modeling example, SDG-test.run) to 5. Also, specify the Stepsize computation parameter in Run Control
File.

Potential Optimization Line Search Algorithm

Algorithm

The algorithm can be summarized as follows:

When applied to find a fixed point of the S o D o G map, the potential optimization line search algorithm can be
written:

Cla)=C"" =C' +a'(seDsa[c')-C')i=0...

For each iteration, ¢ is chosen by minimizing different potentials. In this research, the following minimization was

minfs < | *G[C!(@))-C'(a)|” - pal1-a)s-Doc(c')-C']
minfs < ('a)) c'()ﬂ gy “s °Do G(- C'H

\s +De Gc'<a)) j_mn[a1_4\30006(@)_@“2]

[5-0-cfe'e)-c el - sl -0 -cle' - fo-efs -0 -cle')-c')

mln((SoDoG(C')—Ci)t(SoDoG(Ci(a))—Ci(a))jz palt-alls -0oclc)-c [
(@))-C'(a

)| - pefsoneclr)-c
min(SoDoG(Ci)—Ci)t(soDoG(Ci(a))—ci(a))—ﬂa1—a)ﬂsoDoG(c' _ci H
mJ”'”(((S"WG(Ci)—Ci)t(S°DOG(Ci(a))—Ci(a))jz]—ﬁln(aﬁ—a)ﬂsoDoe(ci)_ci”“]

mci”'”[((s"mG(C‘)—ciT (SODoe(ci(@)_ci(a))fj
_ﬂln(a”s oD oG(Ci)—Ci“zjm(@_aﬂs . DOG(Ci)_Ci“Zj

Dataset Modeling

15

16

17

In order to activate this type of averaging, set Stepsize computation optioninRun Control File (for
example, SDG-test.run)to 6 (or 7or8or 9 or 10 or 11 or 12 or 15 or 16 or 17). Also, specify the Stepsize
computation parameter in Run Control File. The following is the mapping between the value of
Stepsize computation option and the respective potential:

min|s o -G(C' (a))-C' og)ﬂ2 pali-als-D- alc') —ci“Z
minfs < 0=G(C' (2))-C' (&) - p?[s - DGlc!)-c'[
mins - -G(C' ())-C' (@)~ palt-afs Do clc')- c'|

) j ﬂln(m—a]‘soDoG(‘)—C‘HZJ
@)-
min((soDoG(C‘)—C)t((

a

min((soooe(ci)—c flsep-clc

a

mmln(us °DoG(C! ())-C'(a
)-c

mm|n(Hs D G[C! (« o ,Bln(|s-D- slc')-c “) -)ﬂsoDoG(c‘ —C‘H)
a))-C)) ~ pali-alfs -DoGlC')-C! H
a))-c

)) - pa?[so e’ CH

10 min(S
o

11 minIn
o

:DGlc')-c'f(s D6l (@))-C/(a))- palt-a)fs - D-G[cT) [

((SoDoG(Ci)_Ci)t(soDoG(Ci(“))_Ci(a)))Z —mn(am_a)ﬂsoDOG(Ci)_CiHctj
((s -DsGlc!}-ci f{s. DoG(Ci(a))_Ci(a)))z

minin
o
12
. .2 . 12
—,Bln(aHS >D+G[C’)—c'” jln((1 ~a)s <D -G(c!)—C'H j
Convergence
Guidance was generated by approximating a fixed point of the composite map. Progress
of the fixed point algorithm towards convergence was measured using a link time
inconsistency norm, defined as
1
2
e - £ ()-5-D-Glel)
t
where, clearly the inconsistency norm attains the value 0 at a deterministic fixed point of
Algorithm the S°D-G : C — C map. Convergence to a constant but non-zero value could be (but is
9 not necessarily) an indication that the stochastic process of link condition trajectories
generated by successive iterations of the solution algorithm has become stationary

(Bottom, 2000).

The presence of uninformed drivers who do not respond to the updated path splits

prevents the norm from reaching 0; however, when the convergence curve becomes

approximately horizontal, it can be concluded that convergence has been approximately

reached (Bottom, Kachani, Perakis, 2006).

- Store C' to Itt0, in case of SDG mapping.

- Simulate the mapping and store SoD o G(Ci) to 1ttl, in case of SDG mapping.

- Call link_time_table_norm, in case of SDG mapping (or
path_split_table_norm, in case of DGS mapping, or msg_norm, in case of GSD
mapping) in order to get norm.

norm = link_time_table_norm (1tt0, Ittl); // || Ck - SDG(CK) |1
ps_norm = path_split_table_norm (pspO, pspl); /7 || Pk - DGS(PK)]]
m_norm = msg_norm (msg0, msgl); /7 || Mk - GSD(MK) |1
- float link_time_table_norm (link_time_table * Ittl, link_time_table * Itt2)
it (! (Ittl->granularity == ltt2->granularity && Ittl->nslices == Itt2->nslices)) { //mw2221
sanity check
cerr << "Attempt to compute norms of incommensurate link time tables !" << endl;
exit (1);
double norm = 0;
int nl = nw->get_nlinks (), ns = Ittl->nslices, gran = Ittl->granularity;
Code A T s

Implementation

for (int ip = 0; ip < ns; ip++) { //mw2221 for each period...
double x = (abs(lttl->lttab[il][ip]) - abs(ltt2->Ittab[il][ip]));
x /= time_scale; //mw2221 this makes sure that x is in tenths of second
norm += x * x * gran; //mw2221 ???why not x*gran*x*gran = x*x*gran*gran???

H
return sqrt (norm);

#if 1
for (int in = 0; in < nn; in++)
if (pstl->enroutetab[in]) {
for (int id = 0; id < nz; id++)
for (int fp = 0, np = ph->get_npaths (in, id); fp < np; fp++)
for (int tp = 0; tp < np; tp++)
for (int it = O0; it < nperiods; it++) {
double x =
pstl->enroutetab[in][id][fp]l[tpl[it] - pst2->enroutetab[in][id][fp]l[tp][it]l;

norm += X*X;

3}
#endif
return sqrt (norm);

- float path_split_table_norm

(const path_split_table * pstl, const path_split_table * pst2)

double norm = 0.;
int nz = nw->get_nzones (), nn = nw->get_nnodes ();

for (int 10 = 0; 10 < nz; io++)
if (pstl->pretriptab[io]) {
for (int ic = 0; ic < 2; ic++)
for (int id = 0; id < nz; id++)
for (int ip = 0, np = ph->get_npaths (io, id); ip < np; ip++)
for (int it = 0; it < ninflowperiods; it++) {
double x =
pstl->pretriptab[io][ic][id][ip][it] - pst2->pretriptab[io][ic][id][ip][it];
norm += X*x;
3
H

- float msg_norm (const info_system * msgl, const info_system * msg2) {
double norm = 0.;
int nz = nw->get_nzones (), nl = nw->get_nlinks Q;

int nper = ninflowperiods;
for (int 10 = 0; i0 < nz; i0++) // pre-trip msgs at origins
if (msgl->pretripinfo[io] != NULL) {
ptinfo * ptl = msgl->pretripinfo [io][(int) FULL_GUIDANCE];
ptinfo * pt2 = msg2->pretripinfo [io][(int) FULL_GUIDANCE];
for (int iper = 0; iper < nper; iper++)
for (int id = 0; id < nz; id++)
for (int np = ph->get_npaths (io, id), ip = 0; ip < np; ip++) {
double xxx = ptl->get_one_path_info (iper, id, ip) -
pt2->get_one_path_info (iper, id, ip);
norm += XXX * XXX;

3
nper = nperiods;
for (int il = 0; il < nl; il++) // en route msgs at beacons

if (msgl->vms[il] !'= NULL) {

ptinfo * ptl = msgl->vms[il];

ptinfo * pt2 = msg2->vms[il];

int io = nw->get_bnode (il);

for (int iper = 0; iper < nper; iper++)

for (int id = 0; id < nz; id++)
for (int np = ph->get_npaths (io, id), ip = 0; ip < np; ip++) {
double xxx = ptl->get_one_path_info (iper, id, ip) -
pt2->get_one_path_info (iper, id, ip);

norm += XXX * XXX;

return sqrt (norm);

Exit Capacity and Storage Capacity

Algorithm

When a vehicle enters a link, its earliest possible exit time is calculated from the link’s
length and fixed speed; no account is taken in this calculation of other vehicles on the link.
The vehicle is then placed at the tail of the link’s queue and the link’s available storage
capacity (calculated from its length and number of lanes) is reduced accordingly. As each
successive vehicle at the head of the queue is processed and moves on the downstream
link, each following vehicle advances in position until it too arrives at the queue head.

For a vehicle at the head of a queue to advance to the next link, it must (i) be able to
leave its current link and (ii) be accepted on the next link. A vehicle is only able to leave
the current link if its earliest possible exit time is less than or equal to the current
simulation time, and if the link that it is on has unused exit capacity remaining in the
current time step. If these conditions are met, and if the link is an enroute decision point,
the vehicle individually reselects a path in accordance with the input path splits
corresponding to that location and the current time step; otherwise it retains its current
path. In either case, the next link on the vehicle’s path is determined.

An exiting vehicle advances if the next link on its path has storage capacity available, or if
it has arrived at its destination.(Bottom, 2000).

Code
Implementation

As defined in vehicle_mover . cc, at every period the algorithm visit each link and verify
whether exit capacity is still available. If so, the algorithm further verifies whether there is
a vehicle that is ready to be moved (vehicle's earliest_link_exit_period >
curr_period). If so, incorporating the path splits, the algorithm tries to move the vehicle
to the next link. Before doing so, the algorithm first verifies whether the downstream link
has sufficient storage capacity for an additional vehicle. If so, the algorithm moves the
vehicle.

Defined in nw.dat, the following is the setup in the original dataset:
"from" Node "to" Node Length (km) Speed Number of Exit

(km/hr) Lanes Capacity
(vehicle/hr)
\Y, C

1 100 0 100 1 10800
100 101 1 100 1 3600
101 102 1 100 1 3600
102 200 1 100 1 3600
100 201 1. 100 1 3600
201 200 1. 100 1 3600
100 301 1 100 1 3600
301 302 1 100 1 3600
302 200 1 100 1 3600
101 201 1 100 1 3600
201 302 1 100 1 3600
301 201 1 100 1 3600
201 102 1 100 1 3600
200 2 0 100 1 39600

ExiT CAPACITY

In Iad. cc, the exit capacity of a particular link is calculated as follows:
"Exit Capacity" = C * "Number of Lanes" * "Flow Scale"

"Flow Scale" is defined in the Run Control File. It is the value of parameter Trip
scale fTactor. The original dataset defines Trip scale factor as 1 for
simplicity.

The unit of "Exit Capacity" is vehicle/hour. However, the time unit in the algorithm is
"period" instead of "hour". Therefore, the exit capacity (c) is calculated as follows:
c = "Exit Capacity" / 3600 * sec_per_period

sec_per_period is defined in the Run Control File. It is the value of parameter
Seconds per period. The original dataset defines Seconds per period as 1
for simplicity.

Clearly the unit of c is vehicle/period. If sec_per_period is one then the unitis
practically vehicle/second.

STORAGE CAPACITY

In 1ad. cc, the storage capacity of a particular link is calculated as follows:
"Storage Capacity" = 1000 * "Number of Lanes" * L * "Flow Scale" /
AVG_VEH LEN

"Flow Scale" is defined in the Run Control File. It is the value of parameter Trip
scale fTactor. The original dataset defines Trip scale factor as 1 for
simplicity.

AVG_VEH_LEN (in meters) is defined in simulation.h. Itis the average length of
vehicles. The original code defines AVG_VEH LEN as 7.5 (meters).

Dataset
Modeling

Using the format described above, specify the network details in nw.dat.

"Flow Scale" is defined in the Run Control File. Specify the value as needed.
sec_per_period is defined in the Run Control File. Specify the value as needed.

AVG_VEH_LEN (in meters) is defined in simulation.h. Modifying this value implies
modifying the whole code. Make sure that you re-compile the application after modifying
simulation.h.

Rounding
Algorithm
Rounding is one of the sources of stochasticity in this application.

In general terms, stochasticity in the model outputs results from (i) randomizing the order in which trip
departures and links are processed, so as to avoid systematic biases in model output, and (ii) rounding to
integers any non-integer numbers of vehicles, link traversal times, flow rates or link capacities per time step.

Although the general idea is always to convert non-integer values to integers, different requirements and
procedures apply to each case:
- Scalar Rounding
o to covert computer average link traversal times to the nearest time unit
- Vector Rounding
0 bucket rounding method of vector rounding
0 to determine the number of vehicles departing from an origin in each time step
0 to determine link exit capacities per time step
- Scalar and vector rounding of link capacities per time step can lead to unsatisfactory results.
Converting an exit capacity of 1799 vehicles/hour into per second integer equivalent in this way, for
example, would block the link. To avoid this problem, the simulator implements random rounding of
link exit capacities when scalar rounding is chosen.

Code Implementation

Rounding in link_time_table
in link_time_table::read_link_time_file

Ittab[il1][it] = (PERIOD) (time_scale * val + 0.5)
in average_link_time_tables

Ittl- >Ittab[11[ip] = (PERIOD) ((1.0-alpha) * abs(ltei->Iteab[il][ip]) + alpha * abs(ltt2-
>Etab[I1ILipD) + 0.5);

in Ilnk time_tracker::compute_link_times

Itt—>lttab[|l][|p] = (int) ((float) cum_time[il][ip] / | populate corresponding cell of link time
(float) cum_entries[il][ip] + 0.5); table with cum_time/cum_entries

Itt->Ittab[il][ip] = int (Itt->Ittab[il][sm-1] + step | interpolate link ime
* (ip-sm+1l) + 0.5);

Rounding in path_time_table
in link_time_table: :compute_path_time

t = (PERIOD) (t / time_scale + 0.5)

Rounding in lad (link attribute data)
in lad: :read_attribute_data

if (bucket_round_link_exit_capacities) {

int span = int (3600. / sec_per_period + 0.5); calculate the number of periods in one
hour

int r = int (span * U01)); get random starting point during hour
period

U01 () returns uniform random variable
between 0 and 1

float ¢ = lav[il].exit_cap /7 3600. * sec_per_period; calculate exit capacity per period

if sec_per_period is 1 then c is
practically the exit capacity per second
float dit = 0_;
The following lines calculate the delta
that will make sure that exit_cap is
retained despite of roundings

10

for (int j = r; j < span; j++) {
int z = int (c + dIt + 0.5);
dlt += c - z;
3
lav[il].delta = dit;
}
Else lav[il].delta = 0.0;

in move_vehicles

loop starts from a random starting
point during hour period to the total
number of periods

ir-n-:_per_ex_cap = int (per_ex_cap + ld->lav[il].delta + 0.5);

ii-:-((frac_per_ex_cap > trip_eps) && (UO1() < frac_per_ex_cap)) int_per_ex_cap++;

Rounding in odp (origin-destination-path)
in odp: :process_trip_specs

i%:((frac_trips > trip_eps) && (UO1() < frac_trips))

trips++

in odp_flows: :initialize_bucket_rounding

int span;

IT (next_time_period == MAX_PERIOD) span = int (3600. /

sec_per_period + 0.5);
else span = next_time_period - curr_period;

for (int it = 0; it < (signed) fsv.size Q; it++) { //

for each current fsv
int r = int (span * U01()); // pick random start

if (r == span) r = span - 1;

float t = fsv[it].ntrips / 3600. * sec_per_period; //

trips in period

float fdelta = fsv[it].delta; // initial discrepancy

should be 0

for (int j = r; j < span; j++) {

int z = int (t + fdelta + 0.5);
fdelta = t + fdelta - z;

3
fsv[it].delta = fdelta;

in odp_flows: :create_trips
nt = int (t + 0.5);
in od-_-f-l ows: :create_trips
float odz = int (t + 0.5);
float odpz = int (f[r] + delt + 0.5);
float odpz = int (f[ip] + pdelta[ip] + 0.5);
int odt = int (t + 0.5);

Rounding in ptinfo
in average_msgs

[-)ii—>set_one_path_info (iper, id, ip, PERIOD (calpha * ptl->get_one_path_info (iper, id, ip)
+ alpha * pt2->get_one_path_info (iper, id, ip) + 0.5))

create the required number of vehicles
if fractional number of trips, avoid
systematic bias from deterministic
rounding

calculate the number of periods in one
hour

get random starting point during hour
period

U01 () returns uniform random variable
between 0 and 1

calculate number of trips per period; if
sec_per_period is 1 then t is practically
the number of trips per second

the following lines calculate the delta
that will make sure that number of trips
is retained despite of roundings

loop starts from a random starting
point during hour period to the total
number of periods

11

ptl->set_one_path_info (iper, id, ip, PERIOD (calpha * ptl->get_one_path_info (iper, id, ip)

+ alpha * pt2->get_one_path_info (iper, id, ip) + 0.5));

Basic Components of the Application

Input Data

Run Control File

Example:
[Trip scale factor] 1.0
[Time scale factor] 10.0
[Network file name] nw.dat
[Path Ffile name] nw.pth
[Number of periods] 2400
[Seconds per period] 1
[Random number seed] 4163
[DBM aggregation] D
[Link capacity rounding] B
[Processing option] 1
[Number of replications] 3
[Number of iterations] 100
[Stepsize computation option] 1

Format of the run control file:

Description
Row 1 "flow scale" multiplier
Row 2 "time scale" multiplier
Row 3 network file name
Row 4 path file name
Row 5 max number of periods (will self-stop earlier if possible)
Row 6 seconds per period
Row 7 random number seed
Row 8 DBM application; possible values are D for disaggregate or A for aggregate
Row 9 link capacity rounding; possible values are B for bucket rounding or R for random rounding
Row 10 processing option
Row 11 number of replications
Row 12 number of iterations
Row 13 step size computation method option; possible values are as follows:
0 for constant step size averaging method; this method requires additional parameter, which is constant value that is specified
in Row 14.

1 for method of successive averaging (MSA)

5 for polyak iterate averaging method; this method requires additional parameter, which is a multiplier that is specified in Row
14.

6 for line search method that optimizes potential as follows:

moin“mapping(ci (a))— C' (axr — pa(1- aﬂmapping(ci)— c H2

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.
7 for line search method that optimizes potential as follows:

moin”mapping (C i (a))— C' (axr - Ba? ”mapping (C i)— C' ”2

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.
8 for line search method that optimizes potential as follows:

main((mapping(ci)— C')t (mapping (Ci (a))— C' (a)))z - ﬁa(1 - aX‘mapping (Ci)— C' H4

This method requires additional parameter, which is a multiplier () that is specified in Row 14.
9 for line search method that optimizes potential as follows:

main((mapping(ci)— c')t (mapping (Ci (a))— c! (a))jz - fa? ”mapping (C ‘)— C' ”4

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.
10 for line search method that optimizes potential as follows:

main(mapping (C ‘)— C')t (mapping (C i (a))— C' (a))— Ba(1- ozj‘mapping(ci)— c! ”2

12

This method requires additional parameter, which is a multiplier (ﬁ) that is specified in Row 14.
11 for line search method that optimizes potential as follows:

mOEn In(((mapping (C !)— c')t (mapping (C ! (a))— c! (a))sz - B In(a(1 - aX‘mapping (Ci)— c! H4 j

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.
12 for line search method that optimizes potential as follows:

min In[((mapping(ci)-c'f (mapping(C' ()~ ¢! (a)))Z]

- ,b’ln(a“mapping(ci)— c' “Zjln(@ - ozj‘mapping(ci)— c! ”zj

This method requires additional parameter, which is a multiplier (3) that is specified in Row 14.
15 for line search method that optimizes potential as follows:

main”mapping (Ci (a))— C' (aX‘ — pa(1- aj‘mapping (Ci)— C' ”

This method requires additional parameter, which is a multiplier (ﬁ) that is specified in Row 14.
16 for line search method that optimizes potential as follows:

min In(”mapping (Ci (a))— C' (axr] -p In(a(1 - ocX‘mapping(Ci)— o ”2]

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.
17 for line search method that optimizes potential as follows:

min |n(”mapping(0i (a))-c' (“Xm

oy In(a“mapping (Ci)— C' “)In((1 - aX‘mapping (Ci)_ c H)

This method requires additional parameter, which is a multiplier (ﬂ) that is specified in Row 14.

Row 14 additional parameter

Network File
Example (nw.dat):
2

1 2

1100 0.0 100.0 1 10800.
100 101 1.0 100.0 1 3600.
101 102 1.0 100.0 1 3600.
102 200 1.0 100.0 1 3600.
100 201 1.5 100.0 1 3600.
201 200 1.5 100.0 1 3600.
100 301 1.0 100.0 1 3600.
301 302 1.0 100.0 1 3600.
302 200 1.0 100.0 1 3600.
101 201 1.0 100.0 1 3600.
201 302 1.0 100.0 1 3600.
301 201 1.0 100.0 1 3600.
201 102 1.0 100.0 1 3600.
200 2 0.0 100.0 1 39600.

13

1 100
101

100

Path File

number of
zones

origin node

destination node

Example (nw.pth):

100
100
100
100
100
100
100
100
100
100
100

RPRRRRRRRRRR

0.0 100.0 1 10800
1.0 100.0 1 3600
"to" - - number . Lo .
nod&i:l.mk@km/hr of lanes C, exit capacity in vehicle/hr
Yy L=1.00km
V = 100 kmihr
@ C = 3600 wh
L=1.0km L= 1.0km
Vo= 100 kmh WV = 100 kmvh v
C = 3600 wh C = 3600 wh c
1 L=15km 201
Vo= 100 km'h
C=3600vwh
L=1.0km L=10km
Vo= 100 km'h Vo= 100 keh v
C = 3600 wh C = 3600 wh C
L=1.0km
| W = 100 kmhr
C = 3800 wh
101 102 200 2 9999
101 201 102 200 2 9999
101 201 200 2 9999
101 201 302 200 2 9999
201 200 2 9999
201 102 200 2 9999
201 302 200 2 9999
301 302 200 2 9999
301 201 102 200 2 9999
301 201 200 2 9999
301 201 302 200 2 9999

flows.dat

Flow rate file contains time period, flow rate (per hour), origin node, and destination node. The data are sorted
by time period.

This input data file is hard-coded in Flowmov.cc.

m
x
o
3
j=1
®

1800
1800
1800
1800
1800
1800
1800
1800
1800
1800
1800

0

=
COWONOURAWNRO

000000000000
000000000000
000000000000
ORRRRRERRRRRERR
ONNNNNNNNNNN

N
N

The following diagram shows how the file is being parsed and interpreted by the application.

origin node
////{desﬂnaﬂon node

0 2 0

0 2 1
odflows.dat
This input data file is hard-coded in DGS_main.cc, GSD_main.cc, SDG_main.cc, and eval_norm.cc
Example:

0O 10800 0012
1200 0 0000

user class origin node
/@type /@nation node
0 10800 0 0 1 2
1200 0 0 0 0 0

Other Hard-Coded Constants

alpha

This constant is hard-coded in path_split_model.cc.

AVG _VEH _LEN
This constant is hard-coded in simulation.h.

g_npers
This constant is hard-coded in DGS_gibbs.cc.

15

g_nvper
This constant is hard-coded in DGS_gibbs.cc.

gran

This constant is hard-coded in DGS_gibbs.cc, DGS_main.cc, GSD_main.cc, SDG_main.cc,
SDG_ppp-cc, eval_norm.cc.

integer_trips
This constant is hard-coded in simulation.cc.

MAX_FILE_NAME_LENGTH
This constant is hard-coded in simulation.cc.

nvmslinks
This constant is hard-coded in ptinfo.cc.

The original code hard-code the number of VMS links as well as the specific nodes of the link, node 100 and
node 101. This setting works specifically with the data set that came with the original code.

start_iter
This constant is related to the implementation of polyak iterate averaging method (Bottom, 2000, page 136):
When applied to find a fixed point of the S - D « G map, the polyak algorithm can be written:
c*'=C'+d'(soDoclc)-C'); i =0...
girt _ @i, 1 gin
i+1
where C" in the final iteration n is the fixed point estimate.
In practice, iterate averaging (computation of the C's) is only started after the MSA-like step shows
signs of stabilizing. (This is called the window of averaging.)

Therefore, start_iter is an approximation of when MSA-like step shows signs of stabilizing.
This constant is hard-coded in DGS_main.cc, GSD_main.cc, SDG_main.cc, SDG_ppp-cc.

switching_penalty
This constant is hard-coded in path_split_model.cc.

trip_eps
This constant is hard-coded in simulation.h.

two_thirds
This constant is hard-coded in DGS_main.cc, GSD_main.cc, SDG_main.cc, SDG_ppp-cc.

* output

These constants are:
logfile_output
convfile_output
link_vol_output
in_link_time_output
path_vol_output
path_time_output
veh_event_output
path_switch_output
in_path_split_output
out_link_time_output
out_path_split_output

16

in_msg_output
out_msg_output

These constants are hard-coded in simulation.cc:

17

Data Structure

link_time_table

The following diagram shows the graphical representation of the data structure:

link_time_table

int granularity
int nslices
Ittab

one per link—p

path_time_table

0
1
2

nslices

PERIOD

o
vjrv

PERIOD

nslices

The following diagram shows the graphical representation of the data structure:

path_time_table

int granularity
int nslices
pttab ——one per olrigina

lad

—one per destinationp

0
1
2

rone per path—»

The following diagram shows the graphical representation of the data structure:

0
1
2

nslices

T

(.
»

et

PERIOD

H

»
»

PERIOD

nslices

|

lad (link attribute data)

lav

one per link—H»

v

link_time_tracker

The following diagram shows the graphical representation of the data structure:

delta

length

vQ

nlanes
exit_cap
storage_cap
curr_vol
curr_entries
curr_exits
queue

Y

link_attributes

link_attributes

delta

length

v0

nlanes
exit_cap
storage_cap
curr_vol
curr_entries
curr_exits
queue

19

link_time_tracker

int granularity
int nslices
cum_entries one per link—p
cum_time
one per link

path_tracker

nslices
0
int
1 I
2 A .
» int
nslices
nslices
0 »| PERIOD
_yY
1 A
» PERIOD
2
nslices

The following diagram shows the graphical representation of the data structure:

path_tracker

int granularity
int nslices

0
1

pvttab —one per origin—» 2
]

—one per destinationp

0

1

rone per path—»

2

0
1
2

nslices

ol
Iy

A4

int pathvol

PERIOD pathtime

nslices

int pathvol

PERIOD pathtime

20

path_split_table

The following diagram shows the graphical representation of the data structure:

path_split_table

pretriptab ——one per origin—»
enroutetab

one per VMS node

e

psw_tracker

| one per
info class

| one per
destination

| one per
"from" path

The following diagram shows the graphical representation of the data structure:

—one per destinationy»

—p

float
ninflowperid
° 3
1 A
» float
——one per path—» 2
: ninflowperid
T float
nperiods
0 v
1 A float
» floa
P 2
to" path
nperiods

21

npaths
psw_tracker 0 0 > int
int link 1 1 4, -
psw_tab -fone per destination»- 2 ——rone per path—p» 2
: : npaths

node-destination-path (ndp)
The following diagram shows the logical representation of the data structure:
D

PathTopoTbl
2,p) (6,p2) (8,ps)

The above example of PathTopoTbl should be logically interpreted as follows:

p1

p2

p3

destination

23

info_system
The following diagram shows the graphical representation of the data structure:

one ;g: EXE‘R—S;(')%’?\I%C(ﬁ(,;O") [ptinfo(node,FULL_GUIDANCE)
A
0
info_system
pretripinfo {one per destination»- 2 —tone pertype—» 0 v ptinfo
vms : 1 RN
»| ptinfo
ptinfo(node,BACKGROUND)
A
I A
q ptinfo(node,VMS_GUIDANCE)
»| ptinfo
one per link v
: > 2 I
»| ptinfo
I A
ptinfo(node,VMS_GUIDANCE)
ptinfo

The following diagram shows the graphical representation of the data structure:

24

ptinfo T

int node npaths path time, computed by
int num_periods a link_time_table::compute_path_time
i e PERIOD
info_type type 1 v
pti ——one per period—» 2 EIN
' . > PERIOD
npaths

path time, computed by
link_time_table::compute_path_time

Output

log file
The file name follows the naming convention <test case name>_ 1og.out. This file records the progress of the simulation.

convergence file
The file name follows the naming convention <test case name>_cnv.out.

In the case of testing the SDG mapping, the columns of the file consist of iteration number in the first column, link time inconsistency norm in the
second and third columns (the content of these two columns are identical), and the value of alpha in the fourth column. In the case of testing the DGS
mapping, the columns of the file consist of iteration number in the first columns, path split inconsistency norm in the second column, link time
inconsistency norm in the third column, and the value of alpha in the fourth column.

File Link Time Output (FLTO)

For example:
000136.2254.3336.24365366367083609 54103611 36 12 36 13 36
100136.7254.5336.7 43652366367 083695410 36 11 36 12 36 13 36
200137.1254.9336.8436536636708360954103611 36 12 36 13 36

The following diagram shows how the file should be parsed and interpreted.

25

period

///%annumiia%nnknum%?>/EMKnumber

0 1 36.2 2 54.3
0 1 36.7 2 54.5
0 1 37.1 2 54.9

N P O
O O o

link time
in tenths of
second

link time
in tenths of
second

link time
in tenths of
second

File Link Volumes Output (FLVO)

For example:
00303100022203110400050006000700080
10303100023503010400050006000700080
20303100022703120400050006000700080

The following diagram shows how the file should be parsed and interpreted.

period
///Jannumber ///4annumber ///4annumber
0 3 0 3 1 0 0 0o 2 2 2 0
1 0 3 0 3 1 0 (0} 0o 2 3 5 0
2 0 3 0 3 1 0 0 0o 2 2 7 0
curren current |current
entries |volume |exits entries |volume |exits entries |volume |exits

File Path Time Output (FPTO)

For example:

0010108.2011145012126.3 013 145.2 01 4 108.3 015 126.
1010108.7011145.901 2 127.1 013 145.7014108.50151
2010109.1 011146.3 012 127.7 013 146.2 014 108.90151

The following diagram shows how the file should be parsed and interpreted.

[e)o)e)
[e)o)e)
[(eJ(o}(o)
[efo)e)
[efoYe)
[efo)e)
oo
[e)o)e)
[e)oNe)
[elo)e)

period
/ligin/@nation oy@nation /|£gin/|gstination
1 0 0 1 1 145 0 1 2

0O O 108.2 126.3
1 0 1 O 108.7 O 1 1 145.9 0 1 2 127.1
2 0 1 o0 109.1 0 1 1 146.3 0 1 2 127.7

path path path
number |time number |time number |time

File Path Volumes Output (FPVO)

For example:
001000112001200130014101500161017001800191
10100011001200130014201510160017001800190
20100011001200130014101510160017101800190

The following diagram shows how the file should be parsed and interpreted.

period
/ligin/lgstination /|£gin/|£stination /|£gin/|£stination
0 0 1 (0} (0} 0 1 1 0 (0} 1 2 0
1 0 1 (0} (0} 0 1 1 0 (0} 1 2 0
2 0 1 (0} (0} 0 1 1 0 (0} 1 2 0
path path
number |volume number |volume

File Path Switches Output (FSWO)
For example:

The following diagram shows how the file should be parsed and interpreted.

ocoo
PR
656
ocoo

period
destination destination
4 npaths 4 npaths

the number of switches

between npaths®th pair of
paths

the number of
between npaths®-
paths

the number of switches
between 2nd pair of paths

the number of switches
between 2nd pair of paths

the number of switches
between 1st pair of paths

the number of switches
between 1st pair of paths

File Split Path Output (FSPO)

For example:

The following diagram shows how the file should be parsed and interpreted.

28

period

VMS node VMS node

/igstination 4 destination

File Vehicle Events Output (FVEO)
For example:

The following diagram shows how the file should be parsed and interpreted.

period

30

Working with the Application

Prepare Development Environment

Install Java Platform

Download and install Java 2 Platform from URL http://java.sun.com/j2se/1.4.2/download.html. At the end of
installation, make sure that environment variable PATH contains the path to Java executable. This executable
should be located under bin directory of Java 2 Platform installation environment.

Install CYGWIN

Download and install CYGWIN from URL http://www.cygwin.com/. At the end of installation, make sure that
environment variable PATH contains the path to gcc executable. This executable should be located under
bin directory of CYGWIN installation environment.

Install Eclipse

Download and install Eclipse from URL http://www.eclipse.org/downloads/. At the time when this report was
written, the latest version of Eclipse was found at URL
http://www.eclipse.org/downloads/download.php?file=/eclipse/downloads/drops/R-3.1.2-
200601181600/eclipse-SDK-3.1.2-win32.zip.

Install C/C++ Development Tools (CDT)

Download and install C/C++ Development Tools (CDT) from URL
http://download.eclipse.org/tools/cdt/releases/eclipse3.1/. At the time when this was written, the latest version
of CDT was found at URL
http://www.eclipse.org/downloads/download.php?file=/tools/cdt/releases/eclipse3.1/dist/3.0.2/org.eclipse.cdt-
3.0.2-win32.x86.zip.

There is no automated installer for installing this component. Instead, one needs to uncompress the files and
copy them to the proper directories of Eclipse installation environment.

Retrieve All Files from UNIX Environment

Retrieve the following files.

makefile

*.cc

*_h
There are 3 sets of code that were created respective to the particular test cases that were being observed.
For example, if one wants to execute test case 2_0_10000_ITERATIONS, then the set of code that needs to
be retrieved will be CODE_2_0_ ORIGINAL_MIGRATED.

Set of Test Cases Set of Code Location in CD

2_0_10000_ITERATIONS CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2 0 ORIGINAL MIGRATED
2 _0_RELAXED_EXIT_CAPACITY CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2 0 ORIGINAL_MIGRATED
2_0_RELAXED_STORAGE_CAPACITY CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2 0 ORIGINAL MIGRATED
2 1 MSA_THEN_POLYAK CODE_2_1 MSA_THEN_POLYAK <CD Root>/CODE_2 1 MSA THEN POLYAK
2_2 POTENTIALS CODE_2_2_ POTENTIALS <CD Root>/CODE_2 2 POTENTIALS

Locate a destination where the development project is going to reside. Copy all of the files to this location.
Create a Project

Bring up ECLIPSE and the following steps in order to create a C++ project.
1. Select menu File > New > Project.. ..

31

File Edit Refactor Mavigate Search Project Run Window Help

Open File...

[€¥] Standard Make C Project

2. In the subsequent workbench window, select Standard Make C++ Project. Click Next.

Create a new C++ Project which uses a simple r
makefile,

— c—

Wizards:
----- 2% Java Project

4% Java Project from Existing Ant Buildfile
----- 2 Plug-in Project

E, C

-2 C++

 [5¥ Managed Make C++ Project
- CVS

- Java

E, Plug-in Development
E, Simple

< Back Mext = Eimish | Cancel

3. In the subsequent window, specify the project name, uncheck check box Use default, and specify
the project directory. The project directory is the path under which all the makefille, *_h, and *.cc
exist. Click Next.

32

@ Tew Project =}

C++/Make Project
Create a Mew C++ Project using 'make’ to build it @

Project name: | IEQR_4200_PROJECT

Project contenits
[Use default

Directory: | Documents\DOCSEOR_4200_CODE Browse, ., |

< Back Mext = | Einish I Cancel

In the following workbench window, make sure that GNU EIf Parser and Cygwin PE Parser are
selected. Click Next.

33

= New Project

C++/Make Project
o
Create a Mew C++ Project using 'make’ to build it @

Set required binary parser for this project

................................

| Discovery Options | CJC4++ Indexer I 1 I *I

Binary Parser:

Elf Parser ~ g |

O HP-Ux SOM Parser

[rE windows Parser ey |
[amx %COFF32 Parser

GMU EIf Parser

Cygwin PE Parser M

< Back [ext = | Einish I Cancel

5. In the subsequent workbench window, specify SDG_main for testing the SDG mapping or DGS_main

for testing the DGS mapping. The following screen snapshot shows how to define SDG_main. Click
OK.

34

= Properties for IEOR_4900_PROJECT = m

Itype filter text ;I C/C++ Make Project IR IR
- Info
- Builders Make builder settings.
- CfC++ Documentation

- CfC++ File Types ;
Make Builder i i iscg 4 I » I
-C/C++ Indude Paths &5 | Environment I Error Parsers | Binary Parser I Discc

-~ CfC++ Indexer —Build command

~ CJC++Make Project ¥ Use default

- CfC++ Project Paths _ -

- Project References Build command: | mzke Yariables, ., |
—Build Setting

[~ Stop on first build error,

—Workbench Build Behavior
Warkbench build type: Make build target:

™ Build on resource save (Auto Build) I a Wariables. .. |

Note: See Workbench automatic build preference.,

v Build {Incremental Build) ISDG_main Variables. .. |
Iv Rebuild (Full Build) I dean al Variables. .. |
v Clean Idean Variables... |

—Build Directory

Build directory: Browse... | Variables. .. |

(<] 1 | [l] Restore Defaults | Apply |

Ok I Cancel |

Compile
Follow the following steps to compile the application:
1. Right click on the name of the project that was just created. Select Create Make Target.. ..

= C/C++ - Eclipse SDK

File Edit Refactor Mavigate Search Project Run

Open in Mew Window

Create Make Target...
Build Make Target...
Build Project

=1

a

Ici-H &S| m | &-68-& -G -
o — N
B¢ CjC++Projects 1 - Mavigator 8
LA | cé:j =
- [2] TEQR _4900 [1]
-1 IEOR_4300_2
E." A i e —
IE Mew L4
B GoInto

Specify SDG_main for Target Name and Make Target. In the case of testing DGS mapping,

specify DGS_main instead. Click Create.

|

i Create a new Make target

X

Target Mame: I SDG_main

—Make Target

Make Target: I SDG_main

— Build command
v Use default

Build command;: | make

—Build Setting
[~ Stop on first build error.
¥ Run all project builders.

Create I Cancel

Right click on the name of the project and select Build Make Target..

36

-
= C/C++ - Eclipse SDK
File Edit Refactor Mavigate Search Project FRu

| C3 - | & -6 @ -
(BG) cfc++Projects 3 . Navigator| = O
: S [—] q}(];. =
27 IECR._4300 [ﬂ

=5 IEOR_4900_2

EIE LT iromn annn nneIseT!
Mew r

Go Into

Open in Mew Window

Create Make Target...
Build Make Target...
Build Project

[
[
[
[
[
[
[
[
[Rebuild Project

Copy

4. In the subsequent window, select SDG_main and click Bui Id.

<= Make Targets

Make Targets for: IEQOR_4500_PROJECT

Target | Location | Add...

Remove

Edit...

FIllE o

Build I Cancel

Test

Follow the following steps to compile the application:

1. Retrieve the following files and copy them to the project path:
a. flows.dat
b. nw.dat
c. nw.pth
d. odflows.dat
e. run control file (<test case name>.run>

2. In Eclipse, highlight the project name and then select menu Run >Run. . ..

‘oject | Run Window Help
- (5 % Fun Last Launched Ctrl+F11 hl;

) %, Debug LastLaunched ~ F11 by
- | Run History y
3
Run As I
Debug History »
Debug As k
Debug...
Q External Tools k

In the subsequent workbench window, right click on C/C++ Local Application and select New.

a1

I'M

Create, manage, and run configurations @
Configurations:
EE
Duplicat Perspectives
------ ese settings assodate a perspective with CfC++
..... & Edipse | Application launch configurations. A different
_____ =] Java Applet perspective may be assodated with each supported
! launch mode, and can optionally be opened when a
""") Ja'u'.a Applic: configuration is launched or when an application
""" Ju JUnit suspends via the Debug preferences. To indicate that a
..... Jii JUnit Plugr perspective should not be opened, select MNone™,
..... @ SWT Applicz
Debug: IDebug ﬂ
Run: INune ﬂ
Restore Defaults |
i
New Apply | Rewerk |
Run Close |

38

4. In the subsequent workbench window, make sure that C/C++ Application has the value
SDG_main.exe (or DGS _main.exe)

2 Run |

Create, manage, and run configurations @
Configurations: Mame: ISDG_main
=[] Cfc++ Local &
. [t] DGS_main : -
El old_SDG_m Main |M= Argwnentsl = E'wlrunmantl 1’553: Debuggerl By Sm.rr::el = common |
- -[c] 5DG_main
4@ Edlipse Applicat project:
-] Java Applet
131 Java Applcatio | IEOR_4300_PROJECT Browse... |
-oJur JUnit C/C++ Application:
34 JUnit Plug4n Te _ .
! DG ; Search Project. .. Browse...
7] swT Apgiicaton il 20 Jrain.cxe hproect.. | e |

¥ Conpect process input & output toaterminal,

[(_] T m

Run I Close |

5. Select tab Arguments and type the name of the run control file (<test case name>. run). Click Run.

39

ﬁ' Run ..

Create, manage, and run configurations @

Configurations: Mame: | SDG_main

--[C] CfC++Local &
DGS_main

old_SDG_m
SDI5_main

4 Edipse Applicat C/C++ Program Arguments:

=] Java Applet r
SDG-test.run
[3] Java Applicatio

Jur JUnit

Ji 2Unit Plug-in Te |
@ SWT Applicatior Variables. .. |

v Use default working directory Workspace, File Syskerm, . i Wariables.. i
sl | 2
Mew l Del Apply i Revert |
Fun Close |

Description of the Test Network

Runs were made using a simple 14-link network with a single origin-destination (OD) pair and eleven OD
paths. The following diagram shows this network. All links are single lane and 1 km long except for links 2
(100-201), which are 1.5 km long. Vehicles are assumed to be 7.5 m long, so the link storage capacities are
about 133 and 200 vehicles, respectively. Free speed on all links is 100 km/hr. Except for the centroid
connectors, all links normally have an exit capacity of 3,600 vehicles/ hour. In some runs, link 6 (102-200) has
a reduced capacity of 900 vehicles/ hour throughout the entire simulation period. Both the origin and the
destination centroid connectors (links 1-100 and 200-2, respectively) have infinite storage capacity (i.e, they
do not spill back).

40

102

L =1.0km
3600 vih

WV = 100 kmthr

L= 1.0km
3600 wh

Vo= 100 kmih

1071

201

L= 1.0km

Vo= 100 kevh

G = 3600 wih

41

Graphic Outputs

Test Case Name Network Guidance Path Splits Flows Times Set of Code Location in CD

2_0_10000_ITERATIONS, SDG Mapping full capacity 100% disaggregate x1 x10 CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED

2_0_10000_ITERATIONS, DGS Mapping full capacity 100% disaggregate x1 x10 CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED

ﬁ_O_E{ELAXED_EX|T_CAPAC|TY, SDG full capacity 100% disaggregate x1 x10 CODE_2_0O_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED
apping

ﬁ_O_E%ELAXED_EXIT_CAPACITY, DGS full capacity 100% disaggregate x1 x10 CODE_2_0_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED
appin

ﬁ_O_RELAXED_STORAGE_CAPAC|TY, SDG full capacity 100% disaggregate x1 x10 CODE_2_0O_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED
appin

ﬁ_O_RELAXED_STORAGE_CAPAC|TY, DGS full capacity 100% disaggregate x1 x10 CODE_2_0O_ORIGINAL_MIGRATED <CD Root>/CODE_2_0_ORIGINAL_MIGRATED
appin

2_1_MSA_THEN_POLYAK full capacity 100% disaggregate x1 x10 CODE_2_1_MSA_THEN_POLYAK <CD Root>/CODE_2_1_MSA_THEN_POLYAK

Test Case Name Network Guidance Path Splits Flows Times Set of Code Location in CD

2_2_POTENTIALS, Network?2 full capacity 100% disaggregate x1 x10 CODE_2_2_POTENTIALS <CD Root>/CODE_2_2_ POTENTIALS

i S— W
—
min c'@)-c'af -
min olc!(@))-c'(e]” -
min o' (@)-c'(a)] -
min olc’@)-c' (e
min olc! (@)-c'(a)
min o' (@)-c'(a) -
min olc’@)-c' (e
min olc! (@)-c'(a)
min olc'(@)-C' (e
min olc'(@)-c'ef -
min olc!(@))-c'(e]” -
min o' (@)-c'(a) -
min c'@)-c'af -

oA X‘mapping (C

Ba(1- X‘mapping (Ci

ﬁa(1 X‘mapping (C

Ba(1- X‘mappm (C'

az“mapping(c

-2
az”mapping(C' C' H , with multiplier () = 0.001, DGS Mapping

-
-
-
-
-

az“mapping(c

az“mapping(c

az“mapping(c

pa(l-a ‘mapping (C

pa(l-a ‘mapping (C

)

)
pali-a)|mapping(C

)

)
)
fali~ a)|mapping(C')~
)
)

— pa(1- aX‘mapping (Ci

)
)
pali- a)|mapping(C')~
)
)

12
-C! “ , with multiplier (£) = 0, DGS Mapping

-2
-C' ” , with multiplier () = 0.001, DGS Mapping

12
C' “ , with multiplier (/) = 0.01, DGS Mapping

112
c' H , with multiplier (5) = 0, DGS Mapping

112

C' H , with multiplier (£) = 0.01, DGS Mapping
i 2

C H , with multiplier (§) = 0.1, DGS Mapping

112
C' H , with multiplier (£) = 1, DGS Mapping

12
-C! “ , with multiplier (£) = 0.1, DGS Mapping

-2
-C' ” , with multiplier (£) = 1, DGS Mapping

S12
-C! ” , with multiplier (£) = 0, SDG Mapping

112
-C' “ , with multiplier (£) = 0.001, SDG Mapping

12
C' “ , with multiplier (£) = 0.01, SDG Mapping

112
-C! ” , with multiplier (£) = 0.1, SDG Mapping

112
-C' “ , with multiplier (£) = 1, SDG Mapping

42

min inglC' (.
min inglC' («
min inglC' («
min ing(C' (o
min inglC' («
min inglC' («
min|mapping(C' («
min|mapping(C' («
min inglC' («
min|mapping (C' («))-
m.mn(umapp.ng(

m|n In Hmapplng(c'

m|nI Hmapplng(c'

Q

m|n In Hmapplng

m|n In Hmapplng c(

(
{
min In(”mapplng (C'
(
(
(

-C' “ with multiplier (£) = 0.01, SDG Mapping
-C! “ with multiplier (£) = 0.1, SDG Mapping

~C'|, with mutiptier (5= 1, SDG Mapping

- | alt - a|mapping(C')| | win mutier () 0,50 wapng
- | a1~ afmapping(C!) ') s (£ =001, 506 wappig
— pin| a1- aj‘mappmg(c') c|) with multipier () = 0.01, SDG Mapping
- 1 -
i alt-a))

ﬂln(om a ‘mappmg(C' of ”) with multiplier (8) = 0.1, SDG Mapping

sy
=1
Q
A
Q
3
QD
o
=2
=]
«
O
O
N
§
5
3
c
i
e
Ry
)]
&)
@
<
o
S
T
>
@

N
N R A A U

. with multiplier (£) = 0, SDG Mapping

—ﬁlna”mappmgc' C“)In(1 aﬂmappmg() Ci“

m|n In(”mapplng

- ﬁln(a”mappmg

m|n In(”mapplng
g

- fln ‘mappmg

2
X‘ j . with multiplier (£) = 0.001, SDG Mapping
-C' ”)In(1 aX‘mapplng(Ci ”

2
X‘ j . with multiplier (ﬁ) =0.01, SDG Mapping
-C' “)In(1 aﬂmappmg() o ”

43

el
c()m(1 |mapping(c')-C'|
el

- Blinla ((mapping c' C'(()In(i a((mapping(c') C‘(()

min In(((mapping
. with multiplier (£) = 0.1, SDG Mapping

- ﬁln(a((mappmg

. with multiplier (8) =

min In(((mapping
(1, SDG Mapping

t

min((mapping() C')) C'(a)

(mapping(

t

m|n (mapping C') C') (mapping(CI

t

ﬂ’a‘l a

ﬂ’a‘l a

14
(mapping (C' -C' ((. with multiplier () = 0, SDG Mapping

(mapping (C

14
-C! ((. with multiplier () = 0.001, SDG Mapping

m|n (mapplng(C' C') - pa(1-a

m|n (mapping (C' c')t

i
i
i
| .

4
- pa(1-a (mapping(C —C'((. with multiplier (8) = 0.1, SDG Mapping

)
)
Imapping c)-c ((4 with multiplier (/3) = 0.01, SDG Mapping
(mapping(C' (@)~ ()
)

t

14
m|n (mapplng (CI c') -C' ((. with multiplier () = 1, SDG Mapping

cif

é

mapping (Ci (a))— C' - Ba? ((mapping (Ci —C! ((4 . with multiplier (3) = 0, SDG Mapping

C')t mapp|ng (Ci (a))— C'(a) ﬁaz((mapping(c' —C! ((4 . with multiplier (3) = 0.001, SDG Mapping

t .

min mapplng(C' C') mappmg(C‘(a))—C‘(a)

m|n (mapping (C' c')t

)
c'(a)
c'(a)
@)
mapping (C*(¢))~C ()] ~ (1~ mapping c
)
)
)
)

(mapping (Ci (a))— C'(a)|| - pa? ((mapping (C el ((4 . with multiplier (8) = 0.1, SDG Mapping
C')t (mapping C' ((;:))—Ci (a)))

(mapping(Ci a))-C'(a))- palt- a((mapping(c' c! ((Z.With multiplier (3) = 0, SDG Mapping

-
-
-
')-)
')-)
)- ﬁaz((mapplng(c')-c' ((4 with multiplier (/3) = 0.01, SDG Mapping
-)
) -

((mapping (C o} ((4 . with multiplier (£) = 1, SDG Mapping

2
H-c! ((. with multiplier (£) = 0.001, SDG Mapping

)-

-

(mapplng(C') c ((z.with multiplier (£) = 0.01, SDG Mapping

(mapplng(C') c ((Z.With multiplier (£) = 0.1, SDG Mapping
-

min(mappmg(C a))—ﬂ’a(1 a (mapping (C' c' ((2.with multiplier () = 1, SDG Mapping

min In(((mapping (C')— o)t (mapping (Ci (a))— C' (0:)))2 J -B In(a 1- a((mapping (Ci)— C' ((4 j . with multiplier (3) = 0, SDG Mapping

2
minIn (mappmg mappmg(C'(a))—Ci (a))j - ﬂln(a 1- aX‘mappmg —C! “4] with multiplier () = 0.001, SDG Mapping
) 2 4
minIn (mappmg mappmg(C'(a))—C' (a))j - ﬂln(a 1- aX‘mappmg ‘] with multiplier () = 0.01, SDG Mapping
) 2 4
minIn (mappmg mappmg(C'(a))—C' (a))j - ﬂln(aﬁ aX‘mappmg ‘ j with multiplier (3) = 0.1, SDG Mapping
. 2 4
minin (mappmg mapplng(C'(a))—C' (a))j - ﬁln(a (1- aX‘mappmg -C! ” j with multiplier (/) = 0, SDG Mapping
. 2
minIn (mappmg(c' C') mapplng(C'(a))—C'(a)))

. with multiplier (£) = 0, SDG Mapping

- | ajmapping(c') Juf - fmapngc')|

min In[((mappmg(c' C')t (mapping(Ci (a))— (o (a)))2

“ . with multiplier (ﬁ) =0.001, SDG Mapping
12

- ﬂln(a”mappmg(c' o} ” jln((1- aj‘mapplng(c') '” j

" In[((mapp'“g(c' c'f (mapping(C' («))- ¢ (0,)))2

. with multiplier (£) = 0.01, SDG Mapping

min In[((mappmg(c' o])t (mapplng() c! (o:)))2
“ . with multiplier (£) = 0.1, SDG Mapping

_ ﬂ,n(aumappmg(c' c/| jln(1 a]‘mappmg(c') iuzj

min In[((mappmg(c' o])t (mapplng() c! (o:)))2
“ . with multiplier (£) = 1, SDG Mapping

)-

)- c
i |
)- c
i |

- | afmapping(c’)- ' Jn{ 1~ cjmappingc’)- '

i |
)- c
i |
)- c

_ﬁln(a“mapplng(c' c'”]In(1 a]‘mappmg(C') i“zj

Test Case Name Network Guidance Path Splits Flows Times Set of Code Locationin CD

2_2 POTENTIALS, Network2, smaller full capacity 100% disaggregate x1 x10 CODE_2_2_POTENTIALS <CD Root>/CODE_2_2_POTENTIALS
smaller

moin“mapping(ci (a))— c' (aj‘z — pa(1- aX‘mapping (Ci)— o} “2 , with multiplier () = 0, DGS Mapping

main“mapping(ci (a))— C (aX‘z — pa(1- aﬂmapping (Ci)— C “2 , with multiplier (3) = 0.001, DGS Mapping

min|mapping(C' (a)) ¢ (e -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' (e -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
min|mapping €' («))- €' (@] -

Ba(1- aﬂmapping (Ci)— c! “2 , with multiplier (3) = 0.01, DGS Mapping

Ba(1- aX‘mapping (C‘)— o} “2 , with multiplier (3) = 0.1, DGS Mapping

ﬂa('] - aX‘mapping (Ci)— c! “2 , with multiplier () = 1, DGS Mapping

) _ . 12
Pa “mapplng (C' -C' H , with multiplier () = 0, DGS Mapping

. .n2
ﬂaz“mapping(C' -C' H , with multiplier (8) = 0.001, DGS Mapping

: 112
"]-C' H , with multiplier (£) = 0.1, DGS Mapping

)

)
ﬂacz“mapping(ci)— c! Hz , with multiplier (3) = 0.01, DGS Mapping

ﬂaz“mapping(c)

)

. .12
ﬂaz”mapping(c' —C'H with multiplier () = 1, DGS Mapping

2
ﬂa('] aX‘mapplng (C' C' “ , with multiplier () = 0, SDG Mapping

ﬂa('] aﬂmappmg (C' C' “2 , with multiplier (£) = 0.001, SDG Mapping

-

-

pa1—afmapping(C')-C![|, wih muttter () =001, DG Mapping

Ba(1- a)ﬂmappmg(C') ol H2‘withmultiplier(ﬁ)=o.1,SDGMapping
-

ﬂa 1 aﬂmappmg (C' C' “2 , with multiplier () = 1, SDG Mapping

Pa “mapplng(-C' H , with multiplier (£) = 0, SDG Mapping

. 2
ﬂaz“mapping(c' -C' H , with multiplier () = 0.001, SDG Mapping

. .12
ﬂaz”mapping(c' -C! H , with multiplier (8) = 0.1, SDG Mapping

c')
)
ﬁazﬂmapping(C‘)-c' Hz , with multplier (/3) = 0.01, SDG Mapping
)
)

2 - il
Pa “mapplng (C -C' H , with multiplier (£) = 1, SDG Mapping

Test Case Name Network Guidance Path Splits Flows Times Set of Code Location in CD
2_2 POTENTIALS, Network3 link 102 -200 100% Aggregate x10 x10 CODE_2_2 POTENTIALS <CD Root>/CODE_2_ 2 POTENTIALS
at 900 v/h

minjmapping(C' o) '

S

- ﬂa('] - aﬂmapping (Ci)— c! “2 , with multiplier () = 0, DGS Mapping

— pa(1- aX‘mapping (C‘)— c' “2 , with multiplier (3) = 0.001, DGS Mapping

46

min|mapping(C' (a)) ¢ (e -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' (e -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
minfmapping (C* (a))- ¢ (a] -
minjmapping(C' («))-C' ()" -
min ing(C' («))- c'(a]‘z
min]mapping (C («))- €' (e -
min[mapping(C' («))-¢' (] -
min|mapping(C' (a))-C' (a)] -
min ing(C' (a))-C'(a) -
minjmapping(C' («))-C' () -

Ba(1- aﬂmapping (C‘)— c! “2 , with multiplier (3) = 0.01, DGS Mapping
Ba(1- aX‘mapping (C‘)— c! “2 , with multiplier (3) = 0.1, DGS Mapping
ﬂa('] - aX‘mapping (Ci)— c! “2 , with multiplier () = 1, DGS Mapping

) _ . 12
Pa “mapplng (C' -C' H , with multiplier () = 0, DGS Mapping

. .n2
ﬂaz“mapping(C' -C' H , with multiplier (8) = 0.001, DGS Mapping

: 112
"]-C' H , with multiplier (£) = 0.1, DGS Mapping

)

)
ﬂacz“mapping(ci)— c! Hz , with multiplier (3) = 0.01, DGS Mapping

ﬂaz“mapping(c)

)

. .12
ﬂaz”mapping(c' —C'H with multiplier () = 1, DGS Mapping

2
ﬂa('] aX‘mapplng (C' C' “ , with multiplier () = 0, SDG Mapping

ﬂa('] aﬂmappmg (C' C' “2 , with multiplier (£) = 0.001, SDG Mapping

-

-

pa1—afmapping(C')-C![|, wih muttter () =001, DG Mapping

Ba(1- a)ﬂmappmg(C') ol H2‘withmultiplier(ﬁ)=o.1‘SDGMapping
-

ﬂa 1 aﬂmappmg (C C' “2 , with multiplier () = 1, SDG Mapping

Pa “mapplng(-C' H , with multiplier (£) = 0, SDG Mapping

12
ﬂaz“mapping (C -C' H , with multiplier (£) = 0.001, SDG Mapping

-2
ﬂaz“mapping(c' -C! H , with multiplier () = 0.01, SDG Mapping
i 2
-C H with multiplier () = 0.1, SDG Mapping

H with multiplier (£) = 1, SDG Mapping

-C'

')-

ﬂa(1 aX‘mapplng(C') C' “,with multiplier (4) = 0.001, SDG Mapping

ﬁa(‘l aX‘mapplng (C') of “ , with multiplier (£) = 0.01, SDG Mapping
>1)-

a)|- pa(l-a ‘mapplng(c' C' “,with multiplier (3) = 0.1, SDG Mapping

47

(
moin In(”mapplng (C

mljn In Hmapplng (C

moin In Hmappmg (C

mcin In Hmappmg (C

m(jn In Hmapplng(c(

minfmapping(C (¢))~C' (o] - (1 - mapping (C) ~C'| it mutiter (8= 1, 50 Wapoing
@)= (@]" |- o1 al1-afmapping(c’)-C' | | win ot) -, o g
@))-C'(a]|" | pin{ et~ a|mappinglc’) ' | win e) =001, 506 vappng
@)@ |-] al1- afmapping(C’)- ' | i mtpter) - 0., 506 Messing
@)@ |- o] al1- afmapping(c’)- ' | it mtpter) - 0.1 506 wapping
) am i al1- afmapping(C') ' | vitn gt) = 1, 506 wapping

(
(
moin In(”mappmg (C
(
(

- ﬁln(a”mapplng C'
min In(”mapplng
- ﬁln(a”mapplng C'
min In(”mapplng
- inla|mappingc')
min In(”mapplng
- ﬁln(a”mapplng C'
min In(”mapplng
e

- fln Hmapplng c'

min (applng(C

-C' “)In('] aX‘mapping (C i)— c' ”

2
X‘ j . with multiplier (£) = 0.001, SDG Mapping
-C! ”)In(1 aX‘mappmg(Ci ”

2
X‘ j . with multiplier (ﬁ) =0.01, SDG Mapping
-C' “)In('] aX‘mappmg() C' ”

2
X‘ j . with multiplier (£) = 0.1, SDG Mapping
-C! ”)In(1 aX‘mappmg() C' ”

2
X‘ j with multiplier (£) = 1, SDG Mapping
-C' “)In('] a}‘mappmg(c') C'”)

mln((mapplng(c')-c' | (mapping(C' (« a))jz pa(1- a]‘mappmg(c') Ci“4.withmultiplier(ﬁ)=0,SDGMapping

mln((mapplng(C') ¢} (mapping(C' («))jz pa(1- a]‘mappmg(c') o “ . with muttiplier (4) = 0.001, SDG Mapping

mln((mapplng(C') ¢} (mapping(c' («))-C)jz pa(1- a]‘mappmg(c') c' “ . with muttiplier (3) = 0.01, SDG Mapping

mln((mapplng(C') C')t(mapplng(C'))-c)jz pa(1- a]‘mappmg(c') c' “ . with multiplier (8) = 0.1, SDG Mapping
i{fmappinalc)- frainec')-

c' “ . with multiplier (£) = 1, SDG Mapping

48

')-c'} {mapping(c' («))-c)) - fia*|mapping(C')~ C" | with muttter (5) = 0, SDG Mapping
mapping(C') C')t(malmoing(c'(oz))—C‘(oc)))2 - fia*|mapping(C')~ C"|" with muttier () = 0001, 50 Mapping
apping(C') C')t(mauolmng(c'(oe))—C'(oc)))2 —ﬁaZHmappmg(C') C H with multiplier (3) = 0.01, SDG Mapping

min (mapping(c')-c' | (malmomg(c'(oz))—C‘(oc)))2 ~ fia*|mapping(C')~ C'|" with muttier ()= 0.1, 50 Mapping
mapping(C')-C' | (mapping C‘(oz))—C‘(oe)))2 Hmapping(i) C H with multiplier () = 1, SDG Mapping

:3 =
>
/\/_\

m|n

minin

a

minin

a

minin

a

minin

a

minin

a

minin

a

applng(C

(
(
(
(
(
(

(mappmg(cl)_ci)t(mappmg(cwa))—ci<a>)j2
mapping(c!)¢ napping c* (o) -)
mapping(c!)¢ napping c* (o) -)
mapping(c!)¢ napping c* (o) -)
mapping(C') - (mappingC* () - o)

mapping C'

mapplng(C'(a))— c! (0:)))2

<)

(x
- pin{ a1~ amapping(c'
- pin{ a1~ amapping(c')

[o61-a]

al-a ‘mapplng

14
-C! ” j . with multiplier (£) = 0, SDG Mapping
. with multiplier (£) = 0.001, SDG Mapping

4
-C! “ . with multiplier (£) = 0.01, SDG Mapping

4

4
-C! “ j with multiplier () = 0.1, SDG Mapping
-C! “] with multiplier (£) = 0, SDG Mapping

. with multiplier (£) = 0, SDG Mapping

—ﬂln(a“mapping(c' —C'“ jln(ﬁ—aj‘mapping(ci)— i 2)

49

mljn In[((mapping(c' o]) (mapplng
—ﬂln(a“mapping(c' C'“ jln(1 aj‘mappmg(c' '“2

minln[((mapping(c' C')t(mapplng

min In[((mapping(c' o])t (mapplng
—ﬁln(a”mapping(c' C'“]In[1 aj‘mapplng(c' '“2
min In[((mapping(c' C')t (mapplng

)
)
o)
)
/)

2

)- («)
-)-
)- («)
- | afmappinglc’)- ' Jnf 1~ a1\mapp.ng(cl)
)- («)
)-)-
)- (@)
-)-

—ﬁln(a”mapping(c' C'“ jln(1 a]‘mapplng(c' '“

. with multiplier (£) = 0.001, SDG Mapping

. with multiplier (£) = 0.01, SDG Mapping

. with multiplier (£) =

0.1, SDG Mapping

. with multiplier (£) = 1, SDG Mapping

Test Case Name Network Guidance Path Splits Flows Times Set of Code Location in CD
2_2 POTENTIALS, Network3, smaller link 102 -200 100% Aggregate x10 x10 CODE_2_2_ POTENTIALS <CD Root>/CODE_2_2_POTENTIALS
at 900 v/h

smaller

min (c'(oz))—c'(ozj‘2 palt- ajmappung(c') H
min g(C‘(a))—C'(O!X\Z pa(1- a)ﬂmappmg(c') ol H
min ing(C'(@))~C'(a) - palt-a)jmappinglc’)-c [,
min g(c'(o:))—c'(a]‘2 palt- a)ﬂmappmg(c') c'”
min g(C'(Ot))—Ci(O!)ﬂ2 po(1- a)ﬂmappmg(c') ol H
minjmapping(C' («))-C' (| - prJmapping c'

min g(ci(a))—ci(a]‘2 ﬂaz”mapping(ci
minjmapping(C' («))-C' ()" -

min g(ci(a))—ci(aj‘2 ﬂaz”mapping(ci

min (c'(oz))—ci(ozj‘2 ﬂaz”mapping(ci

with multiplier (ﬁ) =0, DGS Mapping
with multiplier () = 0.001, DGS Mapping
with multiplier (£) = 0.01, DGS Mapping
with multiplier (ﬁ) = 0.1, DGS Mapping

with multiplier (ﬁ) 1, DGS Mapping

-C' H , with multiplier (§) = 0, DGS Mapping

112
-C' H , with multiplier (£) = 0.001, DGS Mapping

c')
)

pe?|mapping(C')~C'[|” . wit muttpter ()= 001, DGS Mapping
J~CI[" . with muttpte ()= 0.1, DGS Mapping
)

112
-C' H , with multiplier (£) = 1, DGS Mapping

50

minjmapping(C' («))-C' (e - per(1 - | mapping(C')-C' | with muttpter () = 0, 30 Wapping
min @J(Ci(oc))—C'(oz)ﬂ2 Ber(1- a)ﬂmappmg(C') o “2,withmuItipIier(ﬁ)=0.001,SDGMapping
min g(Ci(oz))—C'(oz)ﬂ2 Ba(1- a)ﬂmappmg(C') ol “2,withmultiplier(ﬁ)=0.01,SDGMapping
min g(C‘(oz))—C'(oz)ﬂ2 Ba(1- a)ﬂmappmg(C') ol ”2,withmuItipIier(ﬁ)=0.1,SDGMapping
min @J(C'(oc))—C'(oz)ﬂ2 Ber(1- a)ﬂmappmg(C' C'“z,withmultiplier(ﬁ)=1,SDGMapping
min g(C'(oc))—Ci(oz)ﬂ2 pa Hmappmg(ci)-c H , with multiplier (/3) = 0, SDG Mapping

min ing(C'(o)-C' (oz)ﬂ2 ﬂazﬂmapping(C‘)-c' Hz , with multiplier (/3) = 0.001, SDG Mapping

min ing(C' («))-C' (oc)ﬂ2 ﬁ’erHmappinq(Ci)-c' H2 , with multplier (/3) = 0.01, SDG Mapping

min ing(C'(o)-C' (a)ﬂ2 ﬂocZHmapping(Ci)-c' H2 , with multiplier (/3) = 0.1, SDG Mapping
minfmapping(C' («))-C' (e - prmapping(C’ - ! wit mattter (5 = 1. 50 Mapping

Test Case 2_0_10000_ITERATIONS, SDG Mapping

10000 10000
9000 9000
8000 8000
7000 7000
6000 6000
5000 5000
4000 4000
3000 3000
2000 2000
1000 1000

0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

link time inconsistency norm link time inconsistency norm

52

Link 4

Link 1 Link 5 Link 8 Link 6

Link 2 Link 9

v ey |

\ A
e

,N""«M.ﬂ

Link 3 Link 11 Link 10 Link 13

NN
W

Link 12

Link 4

Link 1 Link 5 Link 8 Link 6

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

Link 12

Link 4

Link 1 Link 5 Link 8 Link 6

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Test Case 2_0_10000_ITERATIONS, DGS Mapping

100
90 -
80
70
60
50

40

Path split inconsistency norm

30

20

6000

5000

it 4000

1 601 1201 1801 2401 3001 3601 4201 4801 5401 6001 6601 7201 7801 8401 9001 9601

path split inconsistency norm and link time inconsistency norm

10000

9000

- 8000

7000

Link time inconsistency norm

3000

2000

1000

100 10000
90 - 9000
80 r 8000
70 1 r 7000

60 1 r 6000

r 5000

r 4000

Path split inconsistency norm
Link time inconsistency norm

3000

2000

1000

[

t t t t t t t t t t t t t t t t 0
1 601 1201 1801 2401 3001 3601 4201 4801 5401 6001 6601 7201 7801 8401 9001 9601

path split inconsistency norm and link time inconsistency norm (Replication1)

57

Link 4

AR,

Link 1 Link 5 Link 8 Link 6

by

/r" M\/\JVM'“ inaed

n g e Ve (VIR SAT A
i, o A b AN

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

f"‘\rw“\"\‘\l A .‘r’\‘wgf‘v‘«““

.

PR N,
oy S Pt e

Link 12

Sy

Link 4

Link 1 Link 5 Link 8 Link 6

PR Nt PP Npnnt A AN

Link 2 Link 9

YN

e, G il gy TN NN

Link 3 Link 11 Link 10 Link 13

P, B

n—

° a0 w0 o0 0 wo owoe e wo

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path O; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 5; links 2-8-6

Path 4; links 2-9

Path 6;

links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Test Case 2_0_RELAXED_EXIT_CAPACITY, SDG Mapping

0 50 100 150 200 250

link time inconsistency norm

300

63

Link 4

Link 1 Link 5 Link 8 Link 6

4
g i

Link 2 Link 9

o

A
ULLGAE i M\ ﬂﬁ-.u-\\ i
ﬂ y
W

Link 3 Link 11 Link 10 Link 13

T J‘ i u"i'V"ﬁ.W\v}‘“\’twm N’*m AN‘V\A i

‘*m W™

Link 12

A

i W

Eha P o a

Link 4

Link 1 Link 5 Link 8 Link 6

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

Link 12

Link 1

Link 3

Link 4

Link 5 Link 8 Link 6

Link 9

Link 11 Link 10 Link 13

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

, DGS Mapping

Test Case 2_0_RELAXED_EXIT_CAPACITY

20

0.9

0.8

wn

~
S

wiou Aoualsisuodul swiy yul
o

© © s
o S =)

wiou Aguslsisuoaul ids yred

@
o

0.2

0.1

68

Link 4

Link 1 Link 5 Link 8 Link 6

ol T

5o u .

o o |)

WA RN & I wﬂ.k,"‘L-ﬁ-»,ﬂ»w’mww‘” i
!

o il
Vi o ool

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

Ul D W

Link 12

Link 4

Link 1 Link 5 Link 8

Link 6

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Test Case 2_0_RELAXED_STORAGE_CAPACITY, SDG Mapping

10000
9000
8000
7000
6000
5000
4000
3000
2000

1000

0 50 100 150 200 250 300

link time inconsistency norm

Link 4

Link 1 Link 5 Link 8 Link 6

SN

D
ot Rl

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

N
I\ Pl

o g o e A2 A

Link 12

AT N
A

A

Link 4

Link 1 Link 5 Link 8 Link 6

Link 2 Link 9

Link 3 Link 11 Link 10 Link 13

20
50
10
F
n_
° 0 1000 1500 200

Link 12

Link 4

Link 1 Link 5 Link 8 Link 6

e

Link 2 Link 9

vl o
N

N

Link 3 Link 11 Link 10 Link 13

v AV
Y

FoA g

F

n_
o 0 1000 1500 200

A

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Test Case 2_0_RELAXED_STORAGE_CAPACITY, DGS Mapping

100 10000

90 9000
80 8000
70 7000
60 6000
50 5000

40 4000

Path split inconsistency norm
Link time inconsistency norm

30 3000

20 2000

1000

0

Link 4

S R o Aot 08
o i Vi

Link 1 Link 5 Link 8 Link 6

Frgav

% P N
AN e A g P e AR

Link 2 Link 9

o
T A vy
W

Link 3 Link 11 Link 10 Link 13

IR

wf N]

A

Link 12

Link 4

Link 1 Link 5 Link 8 Link 6

f

Link 2 Link 9

g,
SO WSS s enl

Link 3 Link 11 Link 10 Link 13

P ot
N

R P VN

n—

° a0 w0 o0 %0 wo oww e wo

Link 12

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Path 0; links 1-4-6

Path 1; links 1-5-8-6

Path 2; links 1-5-9

Path 3; links 1-5-10-13

Path 5; links 2-8-6

Path 4; links 2-9

Path 6; links 2-10-13

Path 7; links 3-12-13

Path 10; links 3-11-10-13

Path 9; links 3-11-9

Path 8; links 3-11-8-6

Test Case 2_1 _MSA_THEN_POLYAK

10000
9000
8000
7000

6000

5000

4000

3000

2000 b ‘

Al ‘ ” ‘
R T T T e

0 0
0 600 700 800 900 1000 0 100 200 300

link time inconsistency norm, SDG — Polyak (Polyak then MSA)

10000
9000
8000
7000

6000

5000
4000
3000
TF O VR oy g ST TOVIoR e
““ dn M‘M ! ﬁ WW‘M’M il m A M« M' Ww M‘k.»ﬂamt gy b Wi 1000 Ll M m Mw il L Mw e W‘w hog il MW A W&.M,WwWMWW”Wnfw'»‘"

0
600 700 800 900 1000 0 100 200 300

link time inconsistency norm, SDG — Polyak (MSA then Polyak)

Test Case 2_2 POTENTIALS

Mapping Step Size Network 2 Network 2, smaller Network 3 Network 3, smaller
C ©

mputation
ethod

DGS MSA

i 1 “uw " ’
JM W‘ [(” m 'M W‘\ K\/ | |

A J' .
‘\ “\}\”“{'\W ‘\”M‘m ”‘WW\ =

|nconS|stency norms

Mapping Line Search R Network 2 Network 2, smaller Network 3 Network 3, smaller
ia

DGS

m(jn“mapping(ci())—C'(1‘ ~ pa(1- aj‘mapplng() Ci“z

with multiplier

(B)=0 W NIAtRL V- :
I | =

u -

~ “ ‘
il
\

41 I
M 4\" m

W\w H’“H}\W‘}\V}J M

with multiplier

(B)=0.001 I E

\u \H\

H\ H

with multiplier

(f)=0.01 | \\ E

il \
ﬁ \/'i ‘N' I m\

i
\ Jh J“' ‘”

\”‘\‘ | 5
| i i “"M” ‘} \\“ W E;
: : “'ﬂ/” i) f f'm MU n\L -

with multiplier

(f)=0.1

I W\ :

("N“’h J\

\M (\’\ |
w\\ T
i r 45 H‘ N N

s

with multiplier

h ‘\ } il
il
(B)=1 | |

‘W\n ’
il 1l

|
| “ }'\ | »J
‘ w h Al h

? \

H\‘ I

T
] n\-
s w

I
g
inconsistency norms

Mapping

Network 2

Network 2, smaller

Network 3

DGS

mjn“mapping(ci(a))—ci(1‘2 ﬂaz”mapping(i) Ci”z

with multiplier

(f)=0.001

W

it 1l

v
I

1‘\\

l

m i ::

m;

U‘

\ rV‘ 8

w \wl (uwnwh “\ L""H' ” N H(\\

M“
\‘\\

\w WJ I

”‘/w D

hJ :

with multiplier

(f)=0.01

‘H(\ ” I # W

\l

‘H

ilhi

“ {M

I

I - ‘
‘ o |
‘mi Il L I
i ! i
H I
"4 |
oo
H Hi)

}J }’\\[/\ \ g

I {‘\ | v” V\ ‘}\
“‘uluk ¥\4”

with multiplier

(B)=01

T ” L“

£ s,
M\}‘M”r

i

|

f W

with multiplier

(B)=1

=
[

H
e
H

1}‘
f [‘

ﬂ

'lHJ' | W

i

g

i il }‘
N (i

i
1 I
} ‘

W y \\U” :H\‘ ||\‘J M n‘

inconsistency norms

88

Mapping Line Search Network 2 Network 2, smaller Network 3 Network 3, smaller
Method, Potential
Optimization
SDG
; i i(P - i i[2
mapping(C' («))-C (a]‘ ~ pa(1- aj‘mappmg c')-c “

min
a

with multiplier

(=0

[

o
i

RN

g B i

SISSESLIIEDE ISP

with multiplier
(f)=0.001

BEEEEEN

SISSESLIIEDEPEP ST

with multiplier

(B)=0.01

g8 @

SISSESLIIEDE ISP

with multiplier

(f)=0.1

SLFILSLLIEF S

with multiplier

(p)=1

RSO ILIIIESLSTEN PSSP

inconsistency norms

89

SDG

main”mapping (C i (a))— c (a]‘z - Ba? ”mapping (C i)— C' ”2

with multiplier
() =0.001

H
i

i

R YY)

with multiplier

(f)=0.01

Nessseene sos

with multiplier

(B)=041

EERRERERE I

=
o

. 8 § 8 § 8 & § &
M
M
:
5
5
M
5
e
'»

SESPEFP IS

with multiplier

(f)=1

IEEREERERE I

=
o

. 8 8 B § B § § &
M
M
:
M
5
M
5
-
5
'»

inconsistency norms

90

Mapping

Line Search Method, Potential Network 2
Optimization

Network 3

SDG

m‘jn”mapping (Ci (a))— c! (aX‘ - pa(1- a]‘mapping (Ci)— c' ”

with multiplier (£) =0

i

RN EE

with multiplier (£) = 0.001

RN EEE

with multiplier (£) = 0.01

B S

with multiplier (£)= 0.1

PEof ¢

ey

[

H

with multiplier (£) =1

HIR

g ¢ 0§ ¢

. . I I)

inconsistency norms

91

Mapping Line Search Method, Potential Network 2 Network 3
Optimization

506
mJnln[Hmapping(Ci(a))—Ci(X‘ j ,Bln(1-a ‘mapplng c')-c! ”

with multiplier (£) =0

with multiplier (/3) = 0.001

with multiplier (£) = 0.01

O

with multiplier () = 0.1

RN NEN

CISISIIIPLEEPPPLA S

with multiplier () =1

NN

| |||||||||||||||||||||||

N

|nconS|stency norms

Mapping

Line Search Method, Potential Network 2 Network 3
Optimization

SDG

m(jn In[”mapping (C i (a))— C! (ax‘z)

-B In(a”mapping (Ci)— c! ”)In((1 - aX‘mapping (Ci)— C' ”)
with multiplier (£) =0 -

with multiplier (£) = 0.001

ST O I

SLLIPILISPRPPFESL S

with multiplier (£) = 0.01

FIEISIIIF LR IF PSS

with multiplier (£)= 0.1

B
-

FIEIIIIIF LR IF PSS

with multiplier (£) =1

L T e RN EEN i

inconsistency norms

93

Line Search Method, Potential Network 2 Network 3

Mapping
Optimization
SDG _ vt _ _ 2 _ 4
moin((mapping(c')—C') (mapping(C' (a))—C' (a))j — pa(1 —aX‘mapping(C')—C' ”
with multiplier (£) =0 \ - [[l |L\r L
1 11t i i
nnnnn T —
with multiplier (£) = 0.001
B J UL
with multiplier (/) = 0.01 niy T
[T T
““““ LN "' T ll' T
with multiplier (£) = 0.1 ‘“‘|||
- It
thmuMMbr(ﬂ)=1 m' R T
ALl

94

Mapping

Line Search Method, Potential Network 2
Optimization

Network 3

SDG

main((mapping (Ci)— C)t (mapping (C ! (a))— C (a)))2 - fa? ”mapping (C i)— C ”4

with multiplier (£) = 0.001 ST
1 . Ly -
M 1 I | m
- e ‘W' 1f
Ww 1T U] 11 T T
with multiplier () = 0.01
I | ‘
with multiplier (8) = 0.1 1 I []
|
| il .
;;;;; L
T T b
with multiplier () = 1 | I N
T

95

Mapping Line Search Method, Potential Network 2 Network 3
Optimization
SDG . A\t . . . 12
min{mapping|C')]-C"' | Imapping|C'(«))- C'(«))- (1 - a)mapping|C' |]-C'
in(mapping (C*) €' f (mapping(C («))- €' (@) - pali - «)|mappinglc’)|
with multiplier (£) =0 |“ i
AL
I
L I
with multiplier (£) = 0.001
L |
with multiplier (3) = 0.01 |“ i
AL
[u

with multiplier (£) = 0.1

with multiplier (£) =1 |

inconsistency norms

96

Mapping Line Search Method, Potential Network 2 Network 3
Optimization

SDG

min In(((mapping (C i)— c!)t (mapping (C i (a))— C' (a))jz] -p In(a(‘l - aX‘mapping (C i)— o} ”4 j

with multiplier (£) =0

with multiplier (£) = 0.001

with multiplier (£) = 0.01

with multiplier () = 0.1

with multiplier (£) =1

. W‘\w

inconsistency norms

Mapping

Line Search Method, Potential

Optimization

Network 2

Network 3

SDG

" In[((mappi”g(ci J-c'} {mappingC' () -C' (a)))z}

-p In(a”mapping c')-c' “2) In((1 - aj‘mapping c)-c Hz j

with multiplier (£) =0

hil ‘

with multiplier (£) = 0.001

with multiplier (£) = 0.01

with multiplier (£) = 0.1

o

with multiplier (£) =1

inconsistency norms

98

Results

Hardware Specification

Test cases were executed using a PC with the following specifications:

Platform: Microsoft Windows XP Home Edition

Processor: 1.80 GHz

RAM: 480 MB
Although the above configuration was sufficient to execute all of the test cases, it could not accommodate
more refined scenarios of Test Case 2_2 Potentials. Test cases of this scenario require a large number of
evaluations in order to advance to the subsequent iteration. Using this hardware specification, the execution
of such test cases was limited to 100 evaluations at each iteration.

Convergence

As expected during the study and implementation of this Anticipatory Route Guidance (ARG) framework,
most test cases exhibit the convergence pattern. This is evident from the inconsistency graphs presented on
pages 52, 63, 74, 79, 85, and 86- 98. In this regard, the contrast was clear between results of composite

mapping SoD o G(Ci) and those of DoGo S(Ci) with composite mapping S oD o G(Ci) resulting in better
convergence patterns. The convergence resulting from SoD o G(C‘) typically dropped faster to lower

inconsistency norms than that of Do G o S(Ci) Moreover, it stabilized better with less noise. It was also
observed that the inconsistency norm never converged to zero. The research tested one hypothesis to
address this concern. Page 63 is the result of a test case where stochasticity and rounding were minimized.
As expected, the convergence was significantly lower than otherwise observed.

Method of Successive Averaging (MSA)

Among the test cases that investigate composite mapping S oD o G(C‘), MSA (Method of Successive

Averaging) algorithm consistently exhibited convergence. Moreover, compared to other averaging methods,
this algorithm seems to be the most efficient in terms of computational effort. It was observed that test cases
could complete in an average of 5 to 10 minutes using MSA algorithm compared to 60 to 90 minutes using
Potential Optimization Line Search Algorithm. The inconsistency norm graphs produced by MSA algorithm
are displayed on page 52, 63, 74, 85, and 86.

Polyak Iterate Averaging Algorithm

Page 85 displays the link time inconsistency norm diagrams of the Polyak Iterate Averaging algorithm. The
research investigated two specific combinations of this averaging algorithm: (1) Polyak followed by MSA and
(2) MSA followed by Polyak. Both cases resulted in similar convergence. One interesting observation from
this comparison is that Polyak’s convergence seems to drop the inconsistency norm faster to the stationary
level.

Potential Optimization Line Search Algorithm

The research allocated a great deal of time and resources on evaluating the Potential Optimization Line
Search Algorithm. The inconsistency norm graphs shown on pages 87 to 98 display the result of various test
cases respective to different potentials and different multipliers (8). Again, these graphs demonstrate that

composite mapping S oD o G(Ci) resulted in better convergence patterns. The convergence resulting from

SoDo G(Ci) typically dropped faster and stabilized better with less noise. Moreover, the combination of

99

composite mapping SoD o G(i), a particular potential, and a particular multiplier () could result in much
better convergence. These combinations are

Mapping Potential

So DcG(Ci) nLianoDoG(C'(a))*

SeDo G(Ci) min In(Hmappmg Ci(a

s-oecle) T frasenst

- ﬁln(a ‘mapplng

P e

- ﬂln(a ‘mappmg

SoDo G(Ci) n}jn |H[Hmapp|ng

= ﬂln(aHmapplng

SoD °G(Ci) min|n| Hmappmg C'(a

S-D °G(i) min|n| Hmappmg Ci(a

Conclusion

Cila] - pali-als-D-clc’)-C|

el) pufat-

)-c'@)~ pn{ att - afmappinglc)-c'[)

) ¢'(af |- pin{ ot amappinglc*)- ' [
)-c'f)

—(c! H)In(1 aj‘mapplng(c' C'H)

<)

H)In(1 aj‘mappmg (C' Gl H)

)-c el

-c' H)In(1 aj‘mapplng() CiH)

o:]‘mapping(ci)—Ci HZJ

0.001

0.01

0.1

Network

link 102 -
200 at 900
vih
link 102 -
200 at 900
v/h
link 102 -
200 at 900
vih
link 102 -
200 at 900
vih

link 102 -
200 at 900
v/h

link 102 -
200 at 900
vih

link 102 -
200 at 900
vih

Guidance

100%

100%

100%

100%

100%

100%

100%

Path Splits

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Flows

x10

x10

x10

x10

x10

x10

x10

In closing, we encourage further investigation using more scenarios of test cases and other averaging
algorithms. One algorithm, for example, is an extension of the potential optimization line search algorithm
where the optimization utilizes information from more than one past iteration. At the very least, further
research should consider the scenarios of executing potential optimization line search algorithms using a
larger number of iterations and/or evaluations for each iteration. This, of course, would require more
sophisticated hardware, another practical improvement that can be accomplished following this research.

References

Bottom, J. A.: Consistent Anticipatory Route Guidance. PhD thesis, Center for Transportation Studies, Massachusetts

Institute of Technology. 2000

Times

x10

x10

x10

x10

x10

x10

x10

Bottom, J. A., Kachani, S., Perakis, G.: The Anticipatory Route Guidance Problem: Formulations, Analysis and Computational

Results. 2006

Magnanti, T. L. and Perakis, G.: Solving Variational Inequality and Fixed Point Problems by Line Searches
and Potential Optimization. Mathematical Programming, 2004

100

Page

il

92

92

92

93

93

93

